OFFSET
0,3
COMMENTS
Also the number of integer compositions of n whose leaders of maximal weakly decreasing runs are strictly increasing. For example, the composition (1,2,2,1,3,1,4,1) has maximal weakly decreasing runs ((1),(2,2,1),(3,1),(4,1)), with leaders (1,2,3,4), so is counted under a(15). - Gus Wiseman, Aug 21 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: Product_{k>=1} (1 + [y^k]P(x,y)) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022
EXAMPLE
The a(1) = 1 through a(5) = 15 multiset partitions:
{1} {2} {3} {4} {5}
{1,1} {1,2} {1,3} {1,4}
{1,1,1} {2,2} {2,3}
{1},{1,1} {1,1,2} {1,1,3}
{1,1,1,1} {1,2,2}
{1},{1,2} {1,1,1,2}
{2},{1,1} {1},{1,3}
{1},{1,1,1} {1},{2,2}
{2},{1,2}
{3},{1,1}
{1,1,1,1,1}
{1},{1,1,2}
{2},{1,1,1}
{1},{1,1,1,1}
{1,1},{1,1,1}
From Gus Wiseman, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], UnsameQ@@Length/@#&]], {n, 0, 10}]
(* second program *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#, GreaterEqual]&]], {n, 0, 15}] (* Gus Wiseman, Aug 21 2024 *)
PROG
(PARI)
P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n, y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022
CROSSREFS
The version for set partitions is A007837.
For sums instead of sizes we have A271619.
For constant instead of distinct sizes we have A319066.
These multiset partitions are ranked by A326533.
For odd instead of distinct sizes we have A356932.
The version for twice-partitions is A358830.
The case of distinct sums also is A358832.
A001970 counts multiset partitions of integer partitions.
A011782 counts compositions.
A335456 counts patterns matched by compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 05 2022
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022
STATUS
approved