login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A374740
Irregular triangle read by rows where row n lists the leaders of weakly decreasing runs in the n-th composition in standard order.
39
1, 2, 1, 3, 2, 1, 2, 1, 4, 3, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 5, 1, 4, 1, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 4
OFFSET
0,2
COMMENTS
The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so row 1234567 is (3,2,2,5).
The nonnegative integers, corresponding compositions, and leaders of weakly decreasing runs begin:
0: () -> () 15: (1,1,1,1) -> (1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4)
3: (1,1) -> (1) 18: (3,2) -> (3)
4: (3) -> (3) 19: (3,1,1) -> (3)
5: (2,1) -> (2) 20: (2,3) -> (2,3)
6: (1,2) -> (1,2) 21: (2,2,1) -> (2)
7: (1,1,1) -> (1) 22: (2,1,2) -> (2,2)
8: (4) -> (4) 23: (2,1,1,1) -> (2)
9: (3,1) -> (3) 24: (1,4) -> (1,4)
10: (2,2) -> (2) 25: (1,3,1) -> (1,3)
11: (2,1,1) -> (2) 26: (1,2,2) -> (1,2)
12: (1,3) -> (1,3) 27: (1,2,1,1) -> (1,2)
13: (1,2,1) -> (1,2) 28: (1,1,3) -> (1,3)
14: (1,1,2) -> (1,2) 29: (1,1,2,1) -> (1,2)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
Table[First/@Split[stc[n], GreaterEqual], {n, 0, 100}]
CROSSREFS
Row-leaders are A065120.
Row-lengths are A124765.
Other types of runs are A374251, A374515, A374683, A374757.
The opposite is A374629.
Positions of distinct (strict) rows are A374701, counted by A374743.
Row-sums are A374741, opposite A374630.
Positions of identical rows are A374744, counted by A374742.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Sequence in context: A026176 A026141 A089209 * A153359 A240474 A023510
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jul 24 2024
STATUS
approved