login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238343 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k descents, n>=0, 0<=k<=n. 28
1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 3, 0, 0, 0, 7, 9, 0, 0, 0, 0, 11, 19, 2, 0, 0, 0, 0, 15, 41, 8, 0, 0, 0, 0, 0, 22, 77, 29, 0, 0, 0, 0, 0, 0, 30, 142, 81, 3, 0, 0, 0, 0, 0, 0, 42, 247, 205, 18, 0, 0, 0, 0, 0, 0, 0, 56, 421, 469, 78, 0, 0, 0, 0, 0, 0, 0, 0, 77, 689, 1013, 264, 5, 0, 0, 0, 0, 0, 0, 0, 0, 101, 1113, 2059, 786, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Counting ascents gives the same triangle.

For n > 0, also the number of compositions of n with k + 1 maximal weakly increasing runs. - Gus Wiseman, Mar 23 2020

LINKS

Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened

EXAMPLE

Triangle starts:

00:    1;

01:    1,    0;

02:    2,    0,    0;

03:    3,    1,    0,    0;

04:    5,    3,    0,    0,   0;

05:    7,    9,    0,    0,   0, 0;

06:   11,   19,    2,    0,   0, 0, 0;

07:   15,   41,    8,    0,   0, 0, 0, 0;

08:   22,   77,   29,    0,   0, 0, 0, 0, 0;

09:   30,  142,   81,    3,   0, 0, 0, 0, 0, 0;

10:   42,  247,  205,   18,   0, 0, 0, 0, 0, 0, 0;

11:   56,  421,  469,   78,   0, 0, 0, 0, 0, 0, 0, 0;

12:   77,  689, 1013,  264,   5, 0, 0, 0, 0, 0, 0, 0, 0;

13:  101, 1113, 2059,  786,  37, 0, 0, 0, 0, 0, 0, 0, 0, 0;

14:  135, 1750, 4021, 2097, 189, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

15:  176, 2712, 7558, 5179, 751, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

...

From Gus Wiseman, Mar 23 2020: (Start)

Row n = 5 counts the following compositions:

  (5)          (3,2)

  (1,4)        (4,1)

  (2,3)        (1,3,1)

  (1,1,3)      (2,1,2)

  (1,2,2)      (2,2,1)

  (1,1,1,2)    (3,1,1)

  (1,1,1,1,1)  (1,1,2,1)

               (1,2,1,1)

               (2,1,1,1)

(End)

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, expand(

       add(b(n-j, j)*`if`(j<i, x, 1), j=1..n)))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):

seq(T(n), n=0..20);

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, j]*If[j<i, x, 1], {j, 1, n}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-Fran├žois Alcover, Jan 08 2015, translated from Maple *)

Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], n==0||Length[Split[#, LessEqual]]==k+1&]], {n, 0, 9}, {k, 0, n}] (* Gus Wiseman, Mar 23 2020 *)

CROSSREFS

Columns k=0-10 give: A000041, A241626, A241627, A241628, A241629, A241630, A241631, A241632, A241633, A241634, A241635.

T(3n,n) gives A000045(n+1).

T(3n+1,n) = A136376(n+1).

Row sums are A011782.

Compositions by length are A007318.

The version for co-runs or levels is A106356.

The case of partitions (instead of compositions) is A133121.

The version for runs is A238279.

The version without zeros is A238344.

The version for weak ascents is A333213.

Cf. A008284, A124765, A124766, A332875, A333215.

Sequence in context: A287736 A180969 A259479 * A238128 A238121 A171380

Adjacent sequences:  A238340 A238341 A238342 * A238344 A238345 A238346

KEYWORD

nonn,tabl

AUTHOR

Joerg Arndt and Alois P. Heinz, Feb 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 07:45 EDT 2021. Contains 346384 sequences. (Running on oeis4.)