login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259479 Skew diagrams, both connected or not. 10
1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 3, 0, 0, 0, 7, 5, 2, 0, 0, 0, 11, 9, 6, 1, 0, 0, 0, 15, 13, 12, 6, 0, 0, 0, 0, 22, 20, 22, 14, 3, 0, 0, 0, 0, 30, 28, 36, 27, 13, 2, 0, 0, 0, 0, 42, 40, 56, 48, 31, 11, 1, 0, 0, 0, 0, 56, 54, 82, 77, 59, 33, 9, 0, 0, 0, 0, 0, 77, 75, 120, 121, 106, 72, 30, 6, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

T(n,m) counts pairs of partitions lambda of n and mu of 0<=m<=n respectively, so that the Ferrers diagram of mu does not exceed that of lambda, and that the diagrams of lambda and mu do not contain equal rows or columns.

REFERENCES

I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.

LINKS

Table of n, a(n) for n=0..90.

Wouter Meeussen, Table n, m, T(n,m) for n= 1..27

EXAMPLE

T(6,2) = 6, the pairs of partitions are ((4,2)/(2)), ((3,3)/(2), ((3,2,1)/(2)), ((3,2,1)/(1,1)), ((2,2,2)/(1,1)) and ((2,2,1,1)/(1,1))

and the diagrams are:

x x 0 0 , x x 0 , x x 0 , x 0 0 , x 0 , x 0

0 0 0 0 0 0 0 x 0 x 0 x 0

0 0 0 0 0

0

triangle begins:

k=0; 1 2 3 4 5 6

n=0; 1

n=1; 1 0

n=2; 2 0 0

n=3; 3 1 0 0

n=4; 5 3 0 0 0

n=5; 7 5 2 0 0 0

n=6; 11 9 6 1 0 0 0

MATHEMATICA

majorsweak[left_List, right_List]:=Block[{le1=Length[left], le2=Length[right]}, If[le2>le1||Min[Sign[left-PadRight[right, le1]]]<0, False, True]];

redu1[\[Lambda]_, \[Mu]_]/; majorsweak[\[Lambda], \[Mu]]:=Delete[#, List/@DeleteCases[Table[i Boole[\[Lambda][[i]]==\[Mu][[i]]], {i, Length[\[Mu]]}], 0]]&/@{\[Lambda], \[Mu]};

redu[\[Lambda]_, \[Mu]_]/; majorsweak[\[Lambda], \[Mu]]:=TransposePartition/@Apply[redu1, TransposePartition/@redu1[\[Lambda], \[Mu]]];

Table[Sum[Boole[majorsweak[\[Lambda], \[Mu]]&&redu[\[Lambda], \[Mu]]=={\[Lambda], \[Mu]}], {\[Lambda], Partitions[n]}, {\[Mu], Partitions[k]}], {n, 0, 12}, {k, 0, n}];

CROSSREFS

Cf. A259478, A259480, A259481, A161492, A227309, A006958.

Sequence in context: A288437 A287736 A180969 * A238343 A238128 A238121

Adjacent sequences: A259476 A259477 A259478 * A259480 A259481 A259482

KEYWORD

nonn,tabl

AUTHOR

Wouter Meeussen, Jun 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 15:08 EDT 2023. Contains 361595 sequences. (Running on oeis4.)