login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259476
Cayley's triangle of V numbers; triangle V(n,k), n >= 4, n <= k <= 2*n-4, read by rows.
1
1, 2, 4, 3, 14, 14, 4, 32, 72, 48, 5, 60, 225, 330, 165, 6, 100, 550, 1320, 1430, 572, 7, 154, 1155, 4004, 7007, 6006, 2002, 8, 224, 2184, 10192, 25480, 34944, 24752, 7072, 9, 312, 3822, 22932, 76440, 148512, 167076, 100776, 25194, 10, 420, 6300, 47040, 199920, 514080, 813960, 775200, 406980, 90440, 11, 550, 9900, 89760, 471240, 1534896, 3197700, 4263600, 3517470, 1634380, 326876
OFFSET
4,2
LINKS
A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
FORMULA
G.f.: (1-x*y*(1+2*y)-sqrt(1-2*x*y*(1+2*y)+x^2*y^2))^2/(4*y^4*(1+y)^2). - Vladimir Kruchinin, Jan 27 2022
T(n,m) = 2*C(m,n)*C(n-2,m-n+2)/(n-2), n>=4. - Vladimir Kruchinin, Jan 27 2022
EXAMPLE
Triangle begins:
1;
2, 4;
3, 14, 14;
4, 32, 72, 48;
5, 60, 225, 330, 165;
6, 100, 550, 1320, 1430, 572;
...
MAPLE
V := proc(n, x)
local X, g, i ;
X := x^2/(1-x) ;
g := X^n ;
for i from 1 to n-2 do
g := diff(g, x) ;
end do;
x^2*g*2*(n-1)/n! ;
end proc;
A259476 := proc(n, k)
V(k-n+2, x) ;
coeftayl(%, x=0, n+2) ;
end proc:
for n from 4 to 14 do
for k from n to 2*n-4 do
printf("%d, ", A259476(n, k)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Jul 09 2015
MATHEMATICA
T[n_, m_] := 2 Binomial[m, n] Binomial[n-2, m-n+2]/(n-2);
Table[T[n, m], {n, 4, 14}, {m, n, 2n-4}] // Flatten (* Jean-François Alcover, Apr 15 2023, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n<4 then 0 else (2*binomial(m, n)*binomial(n-2, m-n+2))/(n-2); /* Vladimir Kruchinin, Jan 27 2022 */
CROSSREFS
Diagonals give A002057, A002058, A002059, A002060.
Row sums give A065096 (with a different offset).
Sequence in context: A079308 A189825 A271878 * A271363 A115399 A109429
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 03 2015
STATUS
approved