login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238341 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with exactly k occurrences of the largest part, n>=0, 0<=k<=n. 14
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 1, 0, 1, 0, 12, 3, 0, 0, 1, 0, 23, 7, 1, 0, 0, 1, 0, 46, 13, 4, 0, 0, 0, 1, 0, 91, 25, 10, 1, 0, 0, 0, 1, 0, 183, 46, 21, 5, 0, 0, 0, 0, 1, 0, 367, 89, 39, 15, 1, 0, 0, 0, 0, 1, 0, 737, 175, 70, 35, 6, 0, 0, 0, 0, 0, 1, 0, 1478, 351, 125, 71, 21, 1, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Columns k=0-10 give: A000007, A097979(n-1) for n>0, A243737, A243738, A243739, A243740, A243741, A243742, A243743, A243744, A243745.

T(n^2,n) gives A243746(n).

Row sums are A011782.

LINKS

Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened

EXAMPLE

Triangle starts:

00:  1;

01:  0,     1;

02:  0,     1,    1;

03:  0,     3,    0,   1;

04:  0,     6,    1,   0,   1;

05:  0,    12,    3,   0,   0,   1;

06:  0,    23,    7,   1,   0,   0,  1;

07:  0,    46,   13,   4,   0,   0,  0, 1;

08:  0,    91,   25,  10,   1,   0,  0, 0, 1;

09:  0,   183,   46,  21,   5,   0,  0, 0, 0, 1;

10:  0,   367,   89,  39,  15,   1,  0, 0, 0, 0, 1;

11:  0,   737,  175,  70,  35,   6,  0, 0, 0, 0, 0, 1;

12:  0,  1478,  351, 125,  71,  21,  1, 0, 0, 0, 0, 0, 1;

13:  0,  2962,  710, 229, 131,  56,  7, 0, 0, 0, 0, 0, 0, 1;

14:  0,  5928, 1443, 435, 230, 126, 28, 1, 0, 0, 0, 0, 0, 0, 1,

15:  0, 11858, 2926, 859, 395, 253, 84, 8, 0, 0, 0, 0, 0, 0, 0, 1;

...

MATHEMATICA

b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_, k_] := Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]; a[0, 0] = 1; a[_, 0] = 0; Table[a[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 19 2015, after Maple code in A243737 *)

CROSSREFS

Cf. A026794 (the same for partitions), A238342 (the same for smallest part).

Sequence in context: A081658 A187253 A022904 * A242451 A262964 A135481

Adjacent sequences:  A238338 A238339 A238340 * A238342 A238343 A238344

KEYWORD

nonn,tabl

AUTHOR

Joerg Arndt and Alois P. Heinz, Feb 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 18:00 EST 2020. Contains 338884 sequences. (Running on oeis4.)