login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243742
Number of compositions of n with exactly seven occurrences of the largest part.
2
1, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3433, 6443, 11484, 19640, 32550, 52860, 85296, 139249, 235001, 418473, 795544, 1610418, 3421514, 7489962, 16625389, 37003313, 82024320, 180421399, 393126594, 848051064, 1811227670, 3831269241, 8030748161
OFFSET
7,9
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 7..650
MAPLE
b:= proc(n, p, i) option remember; `if`(n=0, p!,
`if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
end:
a:= proc(n) local k; k:=7;
add(b(n-i*k, k, i-1)/k!, i=1..n/k)
end:
seq(a(n), n=7..50);
MATHEMATICA
b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=7; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 7, 40}] (* Jean-François Alcover, Feb 10 2015, after Maple *)
CROSSREFS
Column k=7 of A238341.
Sequence in context: A000580 A290995 A229888 * A145457 A145136 A290892
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 09 2014
STATUS
approved