OFFSET
1,2
COMMENTS
Also number of compositions of n+1 with unique largest part. - Vladeta Jovovic, Apr 03 2005
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from Vincenzo Librandi)
FORMULA
G.f.: (1-x)^2 * Sum_{k>=1} x^k/(1-2*x+x^(k+1))^2.
a(n) ~ 2^(n-1)/log(2). - Vaclav Kotesovec, Apr 30 2014
MATHEMATICA
nn=32; Drop[CoefficientList[Series[Sum[x^j/(1 - (x - x^(j + 1))/(1 - x))^2, {j, 1, nn}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Mar 31 2014 *)
b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_, k_] := Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]; a[0, 0] = 1; a[_, 0] = 0; a[n_] := a[n+1, 1]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 10 2015, after A238341 *)
PROG
(PARI) { b(t)=local(r); sum(k=1, t, forstep(s=t%k, t-k, k, u=(t-k-s)\k; r+=binomial(-2, s)*(-2)^(s-u)*binomial(s, u))); r }
{ a(n)=b(n)-2*b(n-1)+b(n-2) } \\ Max Alekseyev, Apr 16 2005
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 07 2004
EXTENSIONS
More terms from Max Alekseyev, Apr 16 2005
STATUS
approved