login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097982
Numbers n such that (phi(n) + sigma(n))/(rad(n))^2 is an integer > 1 (phi=A000010, sigma=A000203, rad=A007947).
4
1, 864, 2430, 7776, 27000, 55296, 69984, 82134, 215622, 432000, 497664, 629856, 675000, 862488, 1499136, 1749600, 2187000, 2667168, 3449952, 3538944, 4287500, 4312440, 4478976, 4563000, 5668704, 6912000, 10800000, 13045131, 13799808, 16875000, 18670176, 19773000
OFFSET
1,2
REFERENCES
J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 749, pp. 95, 319, Ellipses, Paris, 2004.
LINKS
EXAMPLE
For example: 864 is a term since phi(864) = 288, sigma(864) = 2520, 864 = 2^5*3^3, (288+2520)/6^2 = 78.
MATHEMATICA
f[n_] := (DivisorSigma[1, n] + EulerPhi[n])/(Times @@ Transpose[FactorInteger[n]][[1]])^2; Do[ If[IntegerQ[f[n] && f[n] != 1], Print[n]], {n, 1, 1000000}] (* Tanya Khovanova, Aug 30 2006 *)
f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p - 1)*p^(e - 1); q[1] = True; q[n_] := IntegerQ[(r = (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/ (Times @@ First /@ f)^2)] && r > 1; Select[Range[10^5], q] (* Amiram Eldar, Dec 04 2020 *)
PROG
(PARI) rad(n)=my(f=factor(n)[, 1]); prod(i=1, #f, f[i])
is(n)=my(t=(eulerphi(n)+sigma(n))/rad(n)^2); denominator(t)==1 && t>1 \\ Charles R Greathouse IV, Feb 19 2013
CROSSREFS
Subsequence of A121850.
Sequence in context: A179671 A297914 A298507 * A298327 A299220 A300034
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Sep 07 2004
EXTENSIONS
More terms from Tanya Khovanova, Aug 30 2006
a(15)-a(29) from Donovan Johnson, Feb 05 2010
a(1)=1 and a(30)-a(32) added by Amiram Eldar, Dec 04 2020
STATUS
approved