The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097982 Numbers n such that (phi(n) + sigma(n))/(rad(n))^2 is an integer > 1 (phi=A000010, sigma=A000203, rad=A007947). 4
1, 864, 2430, 7776, 27000, 55296, 69984, 82134, 215622, 432000, 497664, 629856, 675000, 862488, 1499136, 1749600, 2187000, 2667168, 3449952, 3538944, 4287500, 4312440, 4478976, 4563000, 5668704, 6912000, 10800000, 13045131, 13799808, 16875000, 18670176, 19773000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 749, pp. 95, 319, Ellipses, Paris, 2004.
LINKS
EXAMPLE
For example: 864 is a term since phi(864) = 288, sigma(864) = 2520, 864 = 2^5*3^3, (288+2520)/6^2 = 78.
MATHEMATICA
f[n_] := (DivisorSigma[1, n] + EulerPhi[n])/(Times @@ Transpose[FactorInteger[n]][[1]])^2; Do[ If[IntegerQ[f[n] && f[n] != 1], Print[n]], {n, 1, 1000000}] (* Tanya Khovanova, Aug 30 2006 *)
f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p - 1)*p^(e - 1); q[1] = True; q[n_] := IntegerQ[(r = (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/ (Times @@ First /@ f)^2)] && r > 1; Select[Range[10^5], q] (* Amiram Eldar, Dec 04 2020 *)
PROG
(PARI) rad(n)=my(f=factor(n)[, 1]); prod(i=1, #f, f[i])
is(n)=my(t=(eulerphi(n)+sigma(n))/rad(n)^2); denominator(t)==1 && t>1 \\ Charles R Greathouse IV, Feb 19 2013
CROSSREFS
Subsequence of A121850.
Sequence in context: A179671 A297914 A298507 * A298327 A299220 A300034
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Sep 07 2004
EXTENSIONS
More terms from Tanya Khovanova, Aug 30 2006
a(15)-a(29) from Donovan Johnson, Feb 05 2010
a(1)=1 and a(30)-a(32) added by Amiram Eldar, Dec 04 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 00:51 EDT 2024. Contains 373432 sequences. (Running on oeis4.)