login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022904
Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 1, where c(i) = +-1 for i>1, c(1) = 1.
20
0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 6, 0, 32, 0, 110, 0, 252, 0, 1139, 0, 3127, 0, 12743, 0, 39767, 0, 156376, 0, 517381, 0, 1870169, 0, 6786580, 0, 25420402, 0, 90815872, 0, 334621081, 0, 1235976769, 0, 4597232973, 0, 17047065235, 0, 63450750049, 0, 238163814619, 0
OFFSET
1,7
LINKS
FORMULA
a(n) = [x^6] Product_{k=5..n+3} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 30 2024
EXAMPLE
a(7) counts these 3 solutions: {7, -11, 13, 17, -19, 23, -29}, {7, 11, -13, -17, 19, 23, -29}, {7, 11, 13, -17, -19, -23, 29}.
MAPLE
A022904 := proc(n)
local a, b, cs, cslen ;
a := 0 ;
for b from 0 to 2^(n-1)-1 do
cs := convert(b, base, 2) ;
cslen := nops(cs) ;
if cslen < n-1 then
cs := [op(cs), seq(0, i=1..n-1-cslen)] ;
end if;
if ithprime(4)+add( (-1+2*op(i-4, cs)) *ithprime(i), i=5..n+3) = 1 then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Aug 06 2015
MATHEMATICA
{f, s} = {4, 1}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
(* A022904, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 3 solutions of using n=7 primes; Peter J. C. Moses, Oct 01 2013 *)
CROSSREFS
Sequence in context: A359760 A081658 A187253 * A238341 A242451 A363978
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(50) from Alois P. Heinz, Aug 06 2015
STATUS
approved