login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 1, where c(i) = +-1 for i>1, c(1) = 1.
20

%I #20 Jan 30 2024 08:22:53

%S 0,0,0,0,0,0,3,0,1,0,6,0,32,0,110,0,252,0,1139,0,3127,0,12743,0,39767,

%T 0,156376,0,517381,0,1870169,0,6786580,0,25420402,0,90815872,0,

%U 334621081,0,1235976769,0,4597232973,0,17047065235,0,63450750049,0,238163814619,0

%N Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 1, where c(i) = +-1 for i>1, c(1) = 1.

%H Alois P. Heinz, <a href="/A022904/b022904.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) = [x^6] Product_{k=5..n+3} (x^prime(k) + 1/x^prime(k)). - _Ilya Gutkovskiy_, Jan 30 2024

%e a(7) counts these 3 solutions: {7, -11, 13, 17, -19, 23, -29}, {7, 11, -13, -17, 19, 23, -29}, {7, 11, 13, -17, -19, -23, 29}.

%p A022904 := proc(n)

%p local a,b,cs,cslen ;

%p a := 0 ;

%p for b from 0 to 2^(n-1)-1 do

%p cs := convert(b,base,2) ;

%p cslen := nops(cs) ;

%p if cslen < n-1 then

%p cs := [op(cs),seq(0,i=1..n-1-cslen)] ;

%p end if;

%p if ithprime(4)+add( (-1+2*op(i-4,cs)) *ithprime(i),i=5..n+3) = 1 then

%p a := a+1 ;

%p end if;

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Aug 06 2015

%t {f, s} = {4, 1}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]

%t (* A022904, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)

%t n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 3 solutions of using n=7 primes; _Peter J. C. Moses_, Oct 01 2013 *)

%Y Cf. A022903, A022920.

%K nonn

%O 1,7

%A _Clark Kimberling_

%E Corrected and extended by _Clark Kimberling_, Oct 01 2013

%E a(23)-a(50) from _Alois P. Heinz_, Aug 06 2015