The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022905 a(n) = M(n) + m(n) for n >= 2, where M(n) = max{ a(i) + a(n-i): i = 1..n-1 }, m(n) = min{ a(i) + a(n-i): i = 1..n-1 }. 3
 1, 4, 10, 19, 34, 55, 85, 124, 178, 247, 337, 448, 589, 760, 970, 1219, 1522, 1879, 2305, 2800, 3385, 4060, 4846, 5743, 6781, 7960, 9310, 10831, 12562, 14503, 16693, 19132, 21874, 24919, 28321, 32080, 36265, 40876, 45982, 51583, 57769 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS T. D. Noe, Table of n, a(n) for n=1..1000 J. M. Dover, On two OEIS conjectures, arXiv:1606.08033 [math.CO], 2016. FORMULA n + sum(k=2, n, A022907(n)). a(n+1) = 1+3*Sum_{k=1..n} A033485(k). - Philippe Deléham, Jun 17 2010 a(n) = a(n-1) + 1 + a(floor(n/2)) + a(ceiling(n/2))) for n>1, a(1) = 1. - Alois P. Heinz, Sep 17 2013 MAPLE a:= proc(n) option remember; `if`(n=1, 1,       a(n-1)+1+a(floor(n/2))+a(ceil(n/2)))     end: seq(a(n), n=1..100);  # Alois P. Heinz, Sep 17 2013 MATHEMATICA a[n_] := a[n] = If[n==1, 1, a[n-1]+1+a[Floor[n/2]]+a[Ceiling[n/2]]]; Array[a, 100] (* Jean-François Alcover, Aug 07 2017, after Alois P. Heinz *) CROSSREFS Cf. A022907, A022908. Sequence in context: A301182 A301194 A015616 * A155368 A301155 A301215 Adjacent sequences:  A022902 A022903 A022904 * A022906 A022907 A022908 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 08:31 EST 2021. Contains 349437 sequences. (Running on oeis4.)