login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015616
Number of triples (i,j,k) with 1 <= i < j < k <= n and gcd(i,j,k) = 1.
5
0, 0, 1, 4, 10, 19, 34, 52, 79, 109, 154, 196, 262, 325, 409, 493, 613, 712, 865, 997, 1171, 1336, 1567, 1747, 2017, 2251, 2548, 2818, 3196, 3472, 3907, 4267, 4717, 5125, 5665, 6079, 6709, 7222, 7858, 8410, 9190, 9748, 10609, 11299, 12127
OFFSET
1,4
LINKS
FORMULA
a(n) = (A071778(n) - 3*A018805(n) + 2)/6. - Vladeta Jovovic, Dec 01 2004
a(n) = Sum_{i=1..n} A000741(i). - Alois P. Heinz, Feb 08 2011
For n > 1, a(n) = n(n-1)(n-2)/6 - Sum_{j=2..n} a(floor(n/j)) = A000292(n-2) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Mar 30 2021
EXAMPLE
For n=6, the a(6) = 19 solutions are the binomial(6,3) = (6*5*4)/(1*2*3) = 20 possible triples minus the triple (2,4,6) with GCD=2.
MAPLE
f:=proc(n) local i, j, k, t1, t2, t3; t1:=0; for i from 1 to n-2 do for j from i+1 to n-1 do t2:=gcd(i, j); for k from j+1 to n do t3:=gcd(t2, k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
# program based on Moebius transform, partial sums of A000741:
with(numtheory):
b:= proc(n) option remember;
add(mobius(n/d)*(d-2)*(d-1)/2, d=divisors(n))
end:
a:= proc(n) option remember;
b(n) +`if`(n=1, 0, a(n-1))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 08 2011
MATHEMATICA
a[n_] := (cnt = 0; Do[cnt += Boole[GCD[i, j, k] == 1], {i, 1, n-2}, {j, i+1, n-1}, {k, j+1, n}]; cnt); Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) print1(c=0); for(k=1, 99, for(j=1, k-1, gcd(j, k)==1 && (c+=j-1) && next; for(i=1, j-1, gcd([i, j, k])>1 || c++)); print1(", "c))
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A015616(n):
if n <= 1:
return 0
c, j = n*(n-1)*(n-2)//6, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c -= (j2-j)*A015616(k1)
j, k1 = j2, n//j2
return c # Chai Wah Wu, Mar 30 2021
CROSSREFS
KEYWORD
nonn
STATUS
approved