The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015616 Number of triples (i,j,k) with 1 <= i < j < k <= n and gcd(i,j,k) = 1. 5
 0, 0, 1, 4, 10, 19, 34, 52, 79, 109, 154, 196, 262, 325, 409, 493, 613, 712, 865, 997, 1171, 1336, 1567, 1747, 2017, 2251, 2548, 2818, 3196, 3472, 3907, 4267, 4717, 5125, 5665, 6079, 6709, 7222, 7858, 8410, 9190, 9748, 10609, 11299, 12127 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 FORMULA a(n) = (A071778(n) - 3*A018805(n) + 2)/6. - Vladeta Jovovic, Dec 01 2004 a(n) = Sum_{i=1..n} A000741(i). - Alois P. Heinz, Feb 08 2011 For n > 1, a(n) = n(n-1)(n-2)/6 - Sum_{j=2..n} a(floor(n/j)) = A000292(n-2) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Mar 30 2021 EXAMPLE For n=6, the a(6) = 19 solutions are the binomial(6,3) = (6*5*4)/(1*2*3) = 20 possible triples minus the triple (2,4,6) with GCD=2. MAPLE f:=proc(n) local i, j, k, t1, t2, t3; t1:=0; for i from 1 to n-2 do for j from i+1 to n-1 do t2:=gcd(i, j); for k from j+1 to n do t3:=gcd(t2, k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end; # program based on Moebius transform, partial sums of A000741: with(numtheory): b:= proc(n) option remember; add(mobius(n/d)*(d-2)*(d-1)/2, d=divisors(n)) end: a:= proc(n) option remember; b(n) +`if`(n=1, 0, a(n-1)) end: seq(a(n), n=1..100); # Alois P. Heinz, Feb 08 2011 MATHEMATICA a[n_] := (cnt = 0; Do[cnt += Boole[GCD[i, j, k] == 1], {i, 1, n-2}, {j, i+1, n-1}, {k, j+1, n}]; cnt); Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Mar 05 2013 *) PROG (PARI) print1(c=0); for(k=1, 99, for(j=1, k-1, gcd(j, k)==1 && (c+=j-1) && next; for(i=1, j-1, gcd([i, j, k])>1 || c++)); print1(", "c)) (Python) from functools import lru_cache @lru_cache(maxsize=None) def A015616(n): if n <= 1: return 0 c, j = n*(n-1)*(n-2)//6, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c -= (j2-j)*A015616(k1) j, k1 = j2, n//j2 return c # Chai Wah Wu, Mar 30 2021 CROSSREFS Cf. A000292, A100448, A027430, A015631. Sequence in context: A009890 A301182 A301194 * A022905 A155368 A301155 Adjacent sequences: A015613 A015614 A015615 * A015617 A015618 A015619 KEYWORD nonn AUTHOR Olivier Gérard STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 01:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)