OFFSET
1,3
COMMENTS
Number of elements in the set {(x,y): 1 <= x < y <= n, 1=gcd(x,y)}. - Michael Somos, Jun 13 1999
Number of fractions in (Haros)-Farey series of order n.
The asymptotic limit for the sequence is a(n) ~ 3*n^2/Pi^2. - Martin Renner, Dec 12 2011
2*a(n) is the number of proper fractions reduced to lowest terms with numerator and denominator less than or equal to n in absolute value. - Stefano Spezia, Aug 09 2019
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, pp. 170-171.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..10000
James J. Sylvester, On the number of fractions contained in any Farey series of which the limiting number is given, in: London, Edinburgh and Dublin Philosophical Magazine (5th series) 15 (1883), p. 251.
FORMULA
a(n) = -1 + A002088(n).
a(n) = (A018805(n) - 1)/2. - Reinhard Zumkeller, Apr 08 2006
G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020
EXAMPLE
x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 11*x^6 + 17*x^7 + 21*x^8 +27*x^9 + ...
MAPLE
with(numtheory): a:=n->add(phi(i), i=1..n): seq(a(n)-1, n=1..60); # Muniru A Asiru, Jul 31 2018
MATHEMATICA
Table[Sum[EulerPhi[m], {m, 1, n}]-1, {n, 1, 56}] (* Geoffrey Critzer, May 16 2014 *)
PROG
(Haskell)
a015614 = (subtract 1) . a002088 -- Reinhard Zumkeller, Jul 29 2012
(PARI) {a(n) = if( n<1, 0, sum(k=1, n, eulerphi(k), -1))} /* Michael Somos, Sep 06 2013 */
(GAP) List([1..60], n->Sum([1..n], i->Phi(i)))-1; # Muniru A Asiru, Jul 31 2018
(Magma) [-1+&+[EulerPhi(i): i in [1..n]]:n in [1..56]]; // Marius A. Burtea, Aug 09 2019
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
if n == 0:
return -1
c, j = 2, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(2*A015614(k1)+1)
j, k1 = j2, n//j2
return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Reinhard Zumkeller, Apr 08 2006
STATUS
approved