Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #72 Mar 15 2022 05:10:22
%S 0,1,3,5,9,11,17,21,27,31,41,45,57,63,71,79,95,101,119,127,139,149,
%T 171,179,199,211,229,241,269,277,307,323,343,359,383,395,431,449,473,
%U 489,529,541,583,603,627,649,695,711,753,773,805,829,881,899,939,963
%N a(n) = -1 + Sum_{i=1..n} phi(i).
%C Number of elements in the set {(x,y): 1 <= x < y <= n, 1=gcd(x,y)}. - _Michael Somos_, Jun 13 1999
%C Number of fractions in (Haros)-Farey series of order n.
%C The asymptotic limit for the sequence is a(n) ~ 3*n^2/Pi^2. - _Martin Renner_, Dec 12 2011
%C 2*a(n) is the number of proper fractions reduced to lowest terms with numerator and denominator less than or equal to n in absolute value. - _Stefano Spezia_, Aug 09 2019
%D Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, pp. 170-171.
%H Stanislav Sykora, <a href="/A015614/b015614.txt">Table of n, a(n) for n = 1..10000</a>
%H James J. Sylvester, <a href="https://doi.org/10.1080/14786448308627346">On the number of fractions contained in any Farey series of which the limiting number is given</a>, in: London, Edinburgh and Dublin Philosophical Magazine (5th series) 15 (1883), p. 251.
%F a(n) = -1 + A002088(n).
%F a(n) = (A018805(n) - 1)/2. - _Reinhard Zumkeller_, Apr 08 2006
%F For n > 1: A214803(a(n)) = A165900(n-1). - _Reinhard Zumkeller_, Jul 29 2012
%F a(n) = A018805(n) - A002088(n). - _Reinhard Zumkeller_, Jan 21 2013
%F G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - _Ilya Gutkovskiy_, Feb 14 2020
%F a(n) = A000217(n-1) - A185670(n). - _Hossein Mahmoodi_, Jan 20 2022
%e x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 11*x^6 + 17*x^7 + 21*x^8 +27*x^9 + ...
%p with(numtheory): a:=n->add(phi(i),i=1..n): seq(a(n)-1,n=1..60); # _Muniru A Asiru_, Jul 31 2018
%t Table[Sum[EulerPhi[m],{m,1,n}]-1,{n,1,56}] (* _Geoffrey Critzer_, May 16 2014 *)
%o (Haskell)
%o a015614 = (subtract 1) . a002088 -- _Reinhard Zumkeller_, Jul 29 2012
%o (PARI) {a(n) = if( n<1, 0, sum(k=1,n,eulerphi(k), -1))} /* _Michael Somos_, Sep 06 2013 */
%o (GAP) List([1..60],n->Sum([1..n],i->Phi(i)))-1; # _Muniru A Asiru_, Jul 31 2018
%o (Magma) [-1+&+[EulerPhi(i): i in [1..n]]:n in [1..56]]; // _Marius A. Burtea_, Aug 09 2019
%o (Python)
%o from functools import lru_cache
%o @lru_cache(maxsize=None)
%o def A015614(n): # based on second formula in A018805
%o if n == 0:
%o return -1
%o c, j = 2, 2
%o k1 = n//j
%o while k1 > 1:
%o j2 = n//k1 + 1
%o c += (j2-j)*(2*A015614(k1)+1)
%o j, k1 = j2, n//j2
%o return (n*(n-1)-c+j)//2 # _Chai Wah Wu_, Mar 24 2021
%Y Cf. A000010, A002088, A018805, A185670.
%Y Column k=2 of triangle A186974.
%K nonn
%O 1,3
%A _Olivier Gérard_
%E More terms from _Reinhard Zumkeller_, Apr 08 2006