login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022908
The sequence M(n) in A022905.
2
0, 2, 5, 11, 20, 35, 56, 86, 125, 179, 248, 338, 449, 590, 761, 971, 1220, 1523, 1880, 2306, 2801, 3386, 4061, 4847, 5744, 6782, 7961, 9311, 10832, 12563, 14504, 16694, 19133, 21875, 24920, 28322, 32081, 36266, 40877, 45983, 51584
OFFSET
1,2
LINKS
J. M. Dover, On two OEIS conjectures, arXiv:1606.08033 [math.CO], 2016.
FORMULA
a(n) = n + Sum_{k=1..n-1} A022907(k), n > 1. [corrected by Sean A. Irvine, May 22 2019]
a(1) = 0; a(n) = (1+3*A033485(2*n-3))/2 = A022905(n-1)+1, n > 1. - Philippe Deléham, May 30 2006
MATHEMATICA
(* b = A022905 *) b[1] = 1; b[n_] := b[n] = b[n-1] + 1 + If[EvenQ[n], 2 b[n/2], b[(n-1)/2] + b[(n+1)/2]];
a[1] = 0; a[n_] := b[n-1] + 1;
Array[a, 50] (* Jean-François Alcover, Nov 11 2018 *)
PROG
(Python)
from itertools import islice
from collections import deque
def A022908_gen(): # generator of terms
aqueue, f, b, a = deque([2]), True, 1, 2
yield from (0, 2)
while True:
a += b
aqueue.append(a)
if f:
yield (3*a+1)//2
b = aqueue.popleft()
f = not f
A022908_list = list(islice(A022908_gen(), 40)) # Chai Wah Wu, Jun 08 2022
CROSSREFS
Sequence in context: A139482 A038377 A261227 * A256310 A026390 A005575
KEYWORD
nonn
STATUS
approved