login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sequence M(n) in A022905.
2

%I #30 Jun 09 2022 02:28:38

%S 0,2,5,11,20,35,56,86,125,179,248,338,449,590,761,971,1220,1523,1880,

%T 2306,2801,3386,4061,4847,5744,6782,7961,9311,10832,12563,14504,16694,

%U 19133,21875,24920,28322,32081,36266,40877,45983,51584

%N The sequence M(n) in A022905.

%H T. D. Noe, <a href="/A022908/b022908.txt">Table of n, a(n) for n = 1..1000</a>

%H J. M. Dover, <a href="http://arxiv.org/abs/1606.08033">On two OEIS conjectures</a>, arXiv:1606.08033 [math.CO], 2016.

%F a(n) = n + Sum_{k=1..n-1} A022907(k), n > 1. [corrected by _Sean A. Irvine_, May 22 2019]

%F a(1) = 0; a(n) = (1+3*A033485(2*n-3))/2 = A022905(n-1)+1, n > 1. - _Philippe Deléham_, May 30 2006

%t (* b = A022905 *) b[1] = 1; b[n_] := b[n] = b[n-1] + 1 + If[EvenQ[n], 2 b[n/2], b[(n-1)/2] + b[(n+1)/2]];

%t a[1] = 0; a[n_] := b[n-1] + 1;

%t Array[a, 50] (* _Jean-François Alcover_, Nov 11 2018 *)

%o (Python)

%o from itertools import islice

%o from collections import deque

%o def A022908_gen(): # generator of terms

%o aqueue, f, b, a = deque([2]), True, 1, 2

%o yield from (0,2)

%o while True:

%o a += b

%o aqueue.append(a)

%o if f:

%o yield (3*a+1)//2

%o b = aqueue.popleft()

%o f = not f

%o A022908_list = list(islice(A022908_gen(),40)) # _Chai Wah Wu_, Jun 08 2022

%K nonn

%O 1,2

%A _Clark Kimberling_