login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139482 Binomial transform of [1, 1, 2, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...]. 1
1, 2, 5, 11, 20, 32, 47, 65, 86, 110, 137, 167, 200, 236, 275, 317, 362, 410, 461, 515, 572, 632, 695, 761, 830, 902, 977, 1055, 1136, 1220, 1307, 1397, 1490, 1586, 1685, 1787, 1892, 2000, 2111, 2225 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A007318 * [1, 1, 2, 1, -1, 1, -1, 1, ...].

The quadratic expression for a(n) follows at once by taking into account that the alternate row sums in the Pascal triangle are equal to zero (starting with the second row). - Emeric Deutsch, May 03 2008

For n > 1, 3*(8*a(n) - 13) = A016945(n-2)^2. - Vincenzo Librandi, Feb 15 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (x^3+2*x^2-x+1)/(-x^3+3*x^2-3*x+1). - Alexander R. Povolotsky, Apr 24 2008

a(n) = (10 - 9*n + 3*n^2)/2 for n >= 2. - Emeric Deutsch, May 03 2008

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=2, a(3)=5, a(4)=11. - Harvey P. Dale, May 02 2015

EXAMPLE

a(4) = 11 = (1, 3, 3, 1) dot (1, 1, 2, 1) = (1 + 3 + 6 + 1).

MAPLE

1, seq((10+3*n^2-9*n)*1/2, n=2..40); # Emeric Deutsch, May 03 2008

MATHEMATICA

Join[{1, 2}, FoldList[##+3&, 5, 3*Range@100]] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)

LinearRecurrence[{3, -3, 1}, {1, 2, 5, 11}, 40] (* Harvey P. Dale, May 02 2015 *)

CROSSREFS

Sequence in context: A179632 A093871 A033263 * A038377 A261227 A022908

Adjacent sequences:  A139479 A139480 A139481 * A139483 A139484 A139485

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Apr 23 2008

EXTENSIONS

More terms from Emeric Deutsch, May 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 02:44 EDT 2019. Contains 326169 sequences. (Running on oeis4.)