OFFSET
0,8
COMMENTS
T(0,0) = 1 by convention. T(n,k) counts the compositions of n in which at least one part has multiplicity k and no part has a multiplicity smaller than k.
T(n,n) = T(2n,n) = 1.
T(3n,n) = A244174(n).
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
EXAMPLE
T(5,1) = 15: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [2,3], [3,2], [1,4], [4,1], [5].
T(6,2) = 7: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3].
T(6,3) = 1: [2,2,2].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 3, 0, 1;
0, 6, 1, 0, 1;
0, 15, 0, 0, 0, 1;
0, 23, 7, 1, 0, 0, 1;
0, 53, 10, 0, 0, 0, 0, 1;
0, 94, 32, 0, 1, 0, 0, 0, 1;
0, 203, 31, 21, 0, 0, 0, 0, 0, 1;
0, 404, 71, 35, 0, 1, 0, 0, 0, 0, 1;
MAPLE
b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
b(n, i-1, p, k) +add(b(n-i*j, i-1, p+j, k)/j!,
j=max(1, k)..floor(n/i))))
end:
T:= (n, k)-> b(n$2, 0, k) -`if`(n=0 and k=0, 0, b(n$2, 0, k+1)):
seq(seq(T(n, k), k=0..n), n=0..14);
MATHEMATICA
b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p, k] + Sum[b[n - i*j, i - 1, p + j, k]/j!, {j, Max[1, k], Floor[n/i]}]]]; T[n_, k_] := b[n, n, 0, k] - If[n == 0 && k == 0, 0, b[n, n, 0, k + 1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
CROSSREFS
AUTHOR
Alois P. Heinz, May 15 2014
STATUS
approved