login
A241626
Number of compositions of n with exactly one descent.
3
1, 3, 9, 19, 41, 77, 142, 247, 421, 689, 1113, 1750, 2712, 4128, 6208, 9201, 13502, 19585, 28158, 40109, 56689, 79486, 110703, 153129, 210536, 287752, 391172, 528961, 711837, 953429, 1271421, 1688293, 2232899, 2941798, 3861621, 5051174, 6584958, 8556655
OFFSET
3,2
LINKS
Joerg Arndt, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 3..4000 (first 1000 terms from Joerg Arndt and Alois P. Heinz)
EXAMPLE
a(3) = 1: [2,1].
a(4) = 3: [3,1], [1,2,1], [2,1,1].
a(5) = 9: [3,2], [4,1], [2,1,2], [3,1,1], [1,3,1], [2,2,1], [2,1,1,1], [1,1,2,1], [1,2,1,1].
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, convert(series(add(b(n-j, j)*
`if`(j<i, x, 1), j=1..n), x, 2), polynom))
end:
a:= n-> coeff(b(n, 0), x, 1):
seq(a(n), n=3..50);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Normal[Series[Sum[b[n - j, j]* If[j < i, x, 1], {j, 1, n}], {x, 0, 2}]]]; a[n_] := Coefficient[b[n, 0], x, 1]; Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=1 of A238343 and of A238344.
Sequence in context: A208972 A307541 A268403 * A160704 A279673 A146662
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 26 2014
STATUS
approved