login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136376
a(n) = n*F(n) + (n-1)*F(n-1).
6
1, 3, 8, 18, 37, 73, 139, 259, 474, 856, 1529, 2707, 4757, 8307, 14428, 24942, 42941, 73661, 125951, 214739, 365166, 619508, 1048753, 1771943, 2988457, 5031843, 8459504, 14201994, 23811349, 39873841, 66695539, 111440227, 186016962
OFFSET
1,2
COMMENTS
For n>2, mod 2 = (0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, ...), i.e., two evens followed by four odds (repeating).
Inverse binomial transform of A117202: (1, 4, 15, 52, ...). - Gary W. Adamson, Sep 03 2008
FORMULA
a(n) = n*F(n) + (n-1)*F(n-1). Equals the matrix product A128064 (unsigned) * A000045.
From R. J. Mathar, Jul 13 2009: (Start)
a(n) = A045925(n) + A045925(n-1).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4).
G.f.: x*(1+x)*(1+x^2)/(x^2+x-1)^2. (End)
a(n) = A238344(3n-2,n-1). - Alois P. Heinz, Apr 11 2014
From Vladimir Reshetnikov, Oct 28 2015: (Start)
a(n) = ((n+1)*F(n)+(n-1)*L(n))/2, where L(n) are Lucas numbers (A000032).
E.g.f.: (exp(phi*x)*(phi^3*x-1)-exp(-x/phi)*(phi^3+x)/phi)/(sqrt(5)*phi)+1, where phi=(1+sqrt(5))/2.
(End)
EXAMPLE
a(5) = 37 = a(n)*F(n) + (n-1)*F(n-1) = 5*5 + 4*3 = 25 + 12.
MATHEMATICA
Table[n*Fibonacci[n] + (n - 1)*Fibonacci[n - 1], {n, 1, 50}] (* Stefan Steinerberger, Dec 28 2007 *)
PROG
(PARI) a(n)=n*fibonacci(n)+(n-1)*fibonacci(n-1) \\ Charles R Greathouse IV, Oct 07 2015
(PARI) Vec(x*(1+x)*(1+x^2)/(x^2+x-1)^2 + O(x^100)) \\ Altug Alkan, Oct 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 28 2007
EXTENSIONS
More terms from Stefan Steinerberger, Dec 28 2007
STATUS
approved