OFFSET
1,2
COMMENTS
For n>2, mod 2 = (0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, ...), i.e., two evens followed by four odds (repeating).
Inverse binomial transform of A117202: (1, 4, 15, 52, ...). - Gary W. Adamson, Sep 03 2008
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
FORMULA
From R. J. Mathar, Jul 13 2009: (Start)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4).
G.f.: x*(1+x)*(1+x^2)/(x^2+x-1)^2. (End)
a(n) = A238344(3n-2,n-1). - Alois P. Heinz, Apr 11 2014
From Vladimir Reshetnikov, Oct 28 2015: (Start)
a(n) = ((n+1)*F(n)+(n-1)*L(n))/2, where L(n) are Lucas numbers (A000032).
E.g.f.: (exp(phi*x)*(phi^3*x-1)-exp(-x/phi)*(phi^3+x)/phi)/(sqrt(5)*phi)+1, where phi=(1+sqrt(5))/2.
(End)
EXAMPLE
a(5) = 37 = a(n)*F(n) + (n-1)*F(n-1) = 5*5 + 4*3 = 25 + 12.
MATHEMATICA
Table[n*Fibonacci[n] + (n - 1)*Fibonacci[n - 1], {n, 1, 50}] (* Stefan Steinerberger, Dec 28 2007 *)
PROG
(PARI) a(n)=n*fibonacci(n)+(n-1)*fibonacci(n-1) \\ Charles R Greathouse IV, Oct 07 2015
(PARI) Vec(x*(1+x)*(1+x^2)/(x^2+x-1)^2 + O(x^100)) \\ Altug Alkan, Oct 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 28 2007
EXTENSIONS
More terms from Stefan Steinerberger, Dec 28 2007
STATUS
approved