The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128064 Triangle T with T(n,n)=n, T(n,n-1)=-(n-1) and otherwise T(n,k)=0; 0
 1, -1, 2, 0, -2, 3, 0, 0, -3, 4, 0, 0, 0, -4, 5, 0, 0, 0, 0, -5, 6, 0, 0, 0, 0, 0, -6, 7, 0, 0, 0, 0, 0, 0, -7, 8, 0, 0, 0, 0, 0, 0, 0, -8, 9, 0, 0, 0, 0, 0, 0, 0, 0, -9, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The matrix inverse = (1/1; 1/2, 1/2; 1/3, 1/3, 1/3;...). Binomial transform of A128064 = A128065. A128064 * A007318 = A103406. The positive version with row sums 2n+1 is given by T(n,k)=sum{j=k..n, C(n,j)*C(j,k)*(-1)^(n-j)*(j+1)}. - Paul Barry, May 26 2007 Binomial transform of unsigned sequence is A003506. - Gary W. Adamson, Aug 29 2007 Table T(n,k) read by antidiagonals. T(n,1) = n (for n>1), T(n,2) = -n, T(n,k) = 0, k > 2. - Boris Putievskiy, Feb 07 2013 LINKS Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO] FORMULA Number triangle T(n,k)=sum{j=k..n, C(n,j)*C(j,k)*(-1)^(j-k)*(j+1)}. - Paul Barry, May 26 2007 a(n) = A002260(n)*A167374(n); a(n) = i*floor((i+2)/(t+2))*(-1)^(i+t+1), where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 07 2013 G.f.: (-1)^k*[x^k*exp(k*x)]'/exp(k*x)=sum(n>=k, (-1)^n*T(n,k)*x^n). - Vladimir Kruchinin, Oct 18 2013 EXAMPLE First few rows of the triangle are: 1; -1,2; 0,-2,3; 0,0,-3,4; 0,0,0,-4,5; 0,0,0,0,-5,6; 0,0,0,0,0,-6,7; ... From Boris Putievskiy, Feb 07 2013: (Start) The start of the sequence as table: 1..-1..0..0..0..0..0... 2..-2..0..0..0..0..0... 3..-3..0..0..0..0..0... 4..-4..0..0..0..0..0... 5..-5..0..0..0..0..0... 6..-6..0..0..0..0..0... 7..-7..0..0..0..0..0... . . . (End) MATHEMATICA row[1] = {1}; row[2] = {-1, 2}; row[n_] := Join[Array[0&, n-2], {-n+1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 12 2015 *) CROSSREFS Cf. A128065, A103406, A003506, A002260, A167374. Sequence in context: A129883 A293578 A098489 * A144217 A187881 A323474 Adjacent sequences:  A128061 A128062 A128063 * A128065 A128066 A128067 KEYWORD tabl,sign,easy AUTHOR Gary W. Adamson, Feb 14 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 06:34 EST 2020. Contains 331033 sequences. (Running on oeis4.)