The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293578 Triangular array read by rows. One form of sieve of Eratosthenes (see comments for construction). 3
 1, 2, 0, 2, 3, 0, 0, 0, 3, 4, 0, 0, 3, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0, 0, 0, 4, 0, 4, 0, 0, 0, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Construction: row n >= 1 contains 2n-1 values indexed from t=-(n-1) to t=+(n-1). Initialize all values to 0. For all positive integers n and all nonnegative integers u, set the value at coordinates (n, -(n-1)) + u*(n,1) to (n + u). Each nonzero value in row n corresponds to a way of writing n as a product of two positive integers (see formulas). Each row starts with a nonzero value and ends with a nonzero value. A number n is a prime iff row n contains exactly two nonzero values. LINKS FORMULA If z is a nonzero value at coordinates (n,t) then n = k*(k+t) where k is a positive integer solution of k^2 + tk - n = 0; Moreover: z = n/k + k - 1; n = ((z+1)^2 - t^2)/4. EXAMPLE Array begins (zeros replaced by dots):                   1                 2 . 2               3 . . . 3             4 . . 3 . . 4           5 . . . . . . . 5         6 . . . 4 . 4 . . . 6       7 . . . . . . . . . . . 7     8 . . . . 5 . . . 5 . . . . 8   9 . . . . . . . 5 . . . . . . . 9 MATHEMATICA F[n_, t_] :=   Module[{x}, x = Floor[(-t + Sqrt[t^2 + 4 n])/2]; n - x (t + x)]; T[n_, t_] := F[n - 1, t] - F[n, t] + 1; ARow[n_] := Table[T[n, t], {t, -(n - 1), +(n - 1)}]; Table[ARow[n], {n, 1, 10}] // Flatten CROSSREFS Cf. A288969. Sequence in context: A053571 A307391 A129883 * A098489 A128064 A144217 Adjacent sequences:  A293575 A293576 A293577 * A293579 A293580 A293581 KEYWORD nonn,tabf AUTHOR Luc Rousseau, Oct 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 08:51 EDT 2021. Contains 345416 sequences. (Running on oeis4.)