login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293575
Difference between the number of proper divisors of n and the number of squares dividing n.
2
-1, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 5, 0, 2, 1, 3, 0, 6, 0, 2, 2, 2, 2, 4, 0, 2, 2, 5, 0, 6, 0, 3, 3, 2, 0, 6, 0, 3, 2, 3, 0, 5, 2, 5, 2, 2, 0, 9, 0, 2, 3, 2, 2, 6, 0, 3, 2, 6, 0, 7, 0, 2, 3, 3, 2, 6, 0, 6, 1, 2, 0, 9, 2, 2, 2, 5, 0, 9, 2, 3, 2, 2, 2, 8, 0, 3, 3, 4, 0, 6, 0, 5, 6
OFFSET
1,6
COMMENTS
The difference between the number of ways of writing n = m + k and the number of ways of writing n = r*s, where m|k and r|s.
First occurrence of k beginning with k=-1: 1, 2, 8, 6, 12, 36, 24, 30, 72, 96, 60, 2097152, 216, 576, 120, 210, 1152, 240, 864, etc. - Robert G. Wilson v, Nov 28 2017
LINKS
FORMULA
a(n) = A032741(n) - A046951(n).
a(n) = A056595(n) - 1. - Antti Karttunen, Oct 30 2017
a(n) = 0 iff n is a prime or a square of a prime, A000430. - Robert G. Wilson v, Nov 28 2017
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - zeta(2) - 2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023
EXAMPLE
a(6) = 2 because 2 is difference of number of ways of writing n = 1 + 5 = 2 + 4 = 3 + 3 where 1|5, 2|4, 3|3 and number of ways of writing n = 1*6 where 1|6.
MATHEMATICA
f[n_] := Block[{d = Divisors@ n}, Length@ d - Length[ Select[ d, IntegerQ@ Sqrt@# &]] - 1];; Array[f, 105] (* Robert G. Wilson v, Nov 28 2017 *)
CROSSREFS
One less than A056595.
Sequence in context: A208459 A144764 A084929 * A054014 A158945 A156667
KEYWORD
sign
AUTHOR
STATUS
approved