login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293572
E.g.f.: exp(x/(1 + x + x^2 + x^3)).
4
1, 1, -1, -5, 1, 161, 31, -8021, -14335, 686881, 2925631, -91860229, -583959551, 15741408385, 169511794271, -3832934048789, -54596554106879, 1106568438159809, 23024933751472255, -412744343093399429, -11208399032299519999, 177909311974519181281
OFFSET
0,4
LINKS
FORMULA
E.g.f.: Product_{k>0} exp(x^(4*k-3)) / exp(x^(4*k-2)).
n*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*a(n) + 2*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*a(n+1) + (n+5)*(n+4)*(n+3)*(8+3*n)*a(n+2) + (n+5)*(n+4)*(13+4*n)*a(n+3) + 3*(n+4)*(n+5)*a(n+4) + (9+2*n)*a(n+5) + a(n+6) = 0. - Robert Israel, May 05 2020
MAPLE
f:= gfun:-rectoproc(n*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*a(n) + 2*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*a(n+1) + (n+5)*(n+4)*(n+3)*(8+3*n)*a(n+2) + (n+5)*(n+4)*(13+4*n)*a(n+3) + 3*(n+4)*(n+5)*a(n+4) + (9+2*n)*a(n+5) + a(n+6),
a(0) = 1, a(1) = 1, a(2) = -1, a(3) = -5, a(4) = 1, a(5) = 161}, a(n), remember):
map(f, [$0..25]); # Robert Israel, May 05 2020
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x/(1+x+x^2+x^3))))
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, exp(x^(4*k-3)-x^(4*k-2)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 12 2017
STATUS
approved