login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293570
a(-1)=4; thereafter a(n) is the least integer m such that the product of the divisors of m is m^n.
2
4, 1, 2, 6, 12, 24, 48, 60, 192, 120, 180, 240, 3072, 360, 12288, 960, 720, 840, 196608, 1260, 786432, 1680, 2880, 15360, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 3221225472, 7560, 46080, 983040, 25920, 10080, 206158430208, 3932160, 184320, 15120, 3298534883328, 20160, 13194139533312, 107520, 25200, 62914560
OFFSET
-1,1
COMMENTS
First occurrence of k in A292286.
Records occur for 4, 6, 12, 24, 48, 60, 192, 240, 3072, 12288, 196608, 786432, 12582912, 805306368, 3221225472, etc.
Terms not a multiple of 60: 1, 2, 4, 6, 12, 24, 48, 192, 3072, 12288, 196608, 786432, 12582912, 805306368, 3221225472, etc.
From Robert Israel, Nov 01 2017: (Start)
All terms are in A025487.
For n >= 1, if a(n) = Product_{i=1..k} prime(i)^e(i) then n = (1/2)*Product_{i=1..k} (e(i)+1).
If p is prime, a(p) = 2^(p-1)*3.
(End)
FORMULA
a(n) = A003680(n), for n >= 1.
MAPLE
g:= proc(F, k)
# minimize Product_{i>=k} prime(i)^(e(i)-1) s.t. Product_{i>=k} e(i) = n
# return [v, E] where E the list of e(i) and v the value
# F the prime factorization of n
uses combinat;
local e, pk, Fv, gv, v, vmin, gmin, T, t, gpf;
if F = [] then return [1, []] fi;
vmin:= infinity;
gpf:= F[-1][1];
pk:= ithprime(k);
T:= cartprod([seq([$0..f[2]], f = F)]);
while not T[finished] do
t:= T[nextvalue]();
e:= mul(F[i][1]^t[i], i=1..nops(F));
if e < gpf then next fi;
Fv:= [seq(`if`(t[i] = F[i][2], NULL, [F[i][1], F[i][2]-t[i]]), i=1..nops(F))];
gv:= procname(Fv, k+1);
v:= pk^(e-1) * gv[1];
if v < vmin then
vmin:= v;
gmin:= [e, op(gv[2])];
fi
od;
[vmin, gmin]
end proc:
4, seq(g(ifactors(2*n)[2], 1)[1], n=0..50); # Robert Israel, Nov 01 2017
MATHEMATICA
f[n_] := Boole[n == 1] + If[OddQ@#, -1, #/2] &@DivisorSigma[0, n]; t[_] = 0; k = 1; While[k < 3300000000, a = f@k; If[ t[a] == 0, t[a] = k; Print[{a, k}]]; k ++]; t@# & /@ Range[-1, 36]
PROG
(PARI) a(n) = if(n == 0 || n == -1, return((n-1)^2)); for(m=2, +oo, my(p=1); fordiv(m, d, p*=d); if(p == m^n, return(m))) \\ Iain Fox, Dec 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 12 2017
EXTENSIONS
More terms from Robert Israel, Nov 01 2017
STATUS
approved