The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007955 Product of divisors of n. 212
 1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS All terms of this sequence occur only once. See the second T. D. Noe link for a proof. - T. D. Noe, Jul 07 2008 Every natural number has a unique representation in terms of divisor products. See the W. Lang link. - Wolfdieter Lang, Feb 08 2011 a(n) = n only if n is prime or 1 (or, if n is in A008578). - Alonso del Arte, Apr 18 2011 Sometimes called the "divisorial" of n. - Daniel Forgues, Aug 03 2012 a(n) divides EulerPhi(x^n-y^n) (see A. Rotkiewicz link). - Michel Marcus, Dec 15 2012 The proof that all the terms of this sequence occur only once (mentioned above) was given by Niven in 1984. - Amiram Eldar, Aug 16 2020 REFERENCES J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe) Wolfdieter Lang, Divisor Product Representation for Natural Numbers. M. Le, On Smarandache Divisor Products, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 144-145. F. Luca, On the product of divisors of n and sigma(n), J. Ineq. Pure Appl. Math. 4 (2) 2003 #46 T. D. Noe, The Divisor Product is Unique A. Rotkiewicz, On the numbers Phi(a^n +/- b^n), Proc. Amer. Math. Soc. 12 (1961), 419-421. Rodica Simon and Frank W. Schmid, Problem E 2946, The American Mathematical Monthly, Vol. 89, No. 5 (1982), p. 333, Ivan Niven, Product  of all Positive Divisors of n, solution to problem E 2946, ibid., Vol. 91, No. 10 (1984), p. 650. F. Smarandache, Only Problems, Not Solutions!. Eric Weisstein's World of Mathematics, Divisor Product OEIS Wiki, Divisorial. FORMULA a(n) = n^(d(n)/2) = n^(A000005(n)/2). Since a(n) = Product_(d|n) d = Product_(d|n) n/d, we have a(n)*a(n) = Product_(d|n) d*(n/d) = Product_(d|n) n = n^(tau(n)), whence a(n) = n^(tau(n)/2). a(p^k) = p^A000217(k). - Enrique Pérez Herrero, Jul 22 2011 a(n) = A078599(n) * A178649(n). - Reinhard Zumkeller, Feb 06 2012 a(n) = A240694(n,A000005(n)). - Reinhard Zumkeller, Apr 10 2014 From Antti Karttunen, Mar 22 2017: (Start) a(n) = A000196(n^A000005(n)). [From the original formula.] A001222(a(n)) = A069264(n). [See Geoffrey Critzer's Feb 03 2015 comment in the latter sequence.] A046523(a(n)) = A283995(n). (End) EXAMPLE Divisors of 10 = [1, 2, 5, 10]. So, a(10) = 2*5*10 = 100. - Indranil Ghosh, Mar 22 2017 MAPLE A007955 := proc(n) mul(d, d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 17 2011 with(numtheory):seq( simplify (n^(tau(n)/2)), n=1..50) # Gary Detlefs, Feb 15 2019 MATHEMATICA Array [ Times @@ Divisors[ # ]&, 100 ] a[n_] := n^(DivisorSigma[0, n]/2); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2013 *) PROG (MAGMA) f := function(n); t1 := &*[d : d in Divisors(n) ]; return t1; end function; (PARI) a(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)) \\ Charles R Greathouse IV, Feb 11 2011 (Haskell) a007955 = product . a027750_row  -- Reinhard Zumkeller, Feb 06 2012 (Sage) [prod(divisors(n)) for n in (1..100)] # Giuseppe Coppoletta, Dec 16 2014 (Scheme) ;; A naive stand-alone implementation: (define (A007955 n) (let loop ((d n) (m 1)) (cond ((zero? d) m) ((zero? (modulo n d)) (loop (- d 1) (* m d))) (else (loop (- d 1) m))))) ;; Faster, if A000005 and A000196 are available: (define (A007955 n) (A000196 (expt n (A000005 n)))) ;; Antti Karttunen, Mar 22 2017 (Python) from sympy import prod, divisors print([prod(divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Mar 22 2017 (GAP) List(List([1..50], n->DivisorsInt(n)), Product); # Muniru A Asiru, Feb 17 2019 CROSSREFS Cf. A000005, A000196, A001222, A007956, A027750, A046523, A069264, A072046, A224381, A243103, A283995. Cf. A000203 (sums of divisors). Sequence in context: A140651 A190997 A184392 * A324502 A170826 A162537 Adjacent sequences:  A007952 A007953 A007954 * A007956 A007957 A007958 KEYWORD nonn,nice AUTHOR R. Muller STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 03:48 EDT 2020. Contains 337911 sequences. (Running on oeis4.)