login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224381
Table of coefficients in the expansion of product((1+d_i*x), d_i|n).
4
1, 1, 1, 1, 3, 2, 1, 4, 3, 1, 7, 14, 8, 1, 6, 5, 1, 12, 47, 72, 36, 1, 8, 7, 1, 15, 70, 120, 64, 1, 13, 39, 27, 1, 18, 97, 180, 100, 1, 12, 11, 1, 28, 287, 1400, 3444, 4032, 1728, 1, 14, 13, 1, 24, 163, 336, 196, 1, 24, 158, 360, 225, 1, 31, 310, 1240, 1984, 1024
OFFSET
0,5
LINKS
FORMULA
T(n,k) = [x^k] Product_{d|n} (1+d*x).
EXAMPLE
Row n = 6 : 1, 12, 47, 72, 36 because (1+x)*(1+2x)*(1+3x)*(1+6x) = 1 + 12*x + 47*x^2 + 72*x^3 + 36*x^4.
Table begins :
1;
1, 1;
1, 3, 2;
1, 4, 3;
1, 7, 14, 8;
1, 6, 5;
1, 12, 47, 72, 36;
1, 8, 7;
1, 15, 70, 120, 64;
1, 13, 39, 27;
1, 18, 97, 180, 100;
1, 12, 11;
1, 28, 287, 1400, 3444, 4032, 1728;
1, 14, 13;
1, 24, 163, 336, 196;
1, 24, 158, 360, 225;
1, 31, 310, 1240, 1984, 1024;
...
MAPLE
with(numtheory):
T:= proc(n) local p;
p:= mul(1+d*x, d=divisors(n));
seq(coeff(p, x, k), k=0..degree(p))
end:
seq(T(n), n=0..30); # Alois P. Heinz, Apr 05 2013
MATHEMATICA
T[n_] := CoefficientList[Product[1+d*x, {d, Divisors[n]}], x]; T[0] = {1};
Array[T, 20, 0] // Flatten (* Jean-François Alcover, Mar 27 2017 *)
CROSSREFS
Columns k=0-3 give: A000012, A000203, A119616, A067817.
Row lengths are: A000005(n)+1.
Last elements of rows give: A007955.
Sequence in context: A350499 A006020 A294177 * A190704 A346611 A190698
KEYWORD
nonn,look,tabf
AUTHOR
Philippe Deléham, Apr 05 2013
STATUS
approved