%I #21 Mar 18 2023 17:31:41
%S 1,1,1,1,3,2,1,4,3,1,7,14,8,1,6,5,1,12,47,72,36,1,8,7,1,15,70,120,64,
%T 1,13,39,27,1,18,97,180,100,1,12,11,1,28,287,1400,3444,4032,1728,1,14,
%U 13,1,24,163,336,196,1,24,158,360,225,1,31,310,1240,1984,1024
%N Table of coefficients in the expansion of product((1+d_i*x), d_i|n).
%H Alois P. Heinz, <a href="/A224381/b224381.txt">Rows n = 0..1500, flattened</a>
%F T(n,k) = [x^k] Product_{d|n} (1+d*x).
%e Row n = 6 : 1, 12, 47, 72, 36 because (1+x)*(1+2x)*(1+3x)*(1+6x) = 1 + 12*x + 47*x^2 + 72*x^3 + 36*x^4.
%e Table begins :
%e 1;
%e 1, 1;
%e 1, 3, 2;
%e 1, 4, 3;
%e 1, 7, 14, 8;
%e 1, 6, 5;
%e 1, 12, 47, 72, 36;
%e 1, 8, 7;
%e 1, 15, 70, 120, 64;
%e 1, 13, 39, 27;
%e 1, 18, 97, 180, 100;
%e 1, 12, 11;
%e 1, 28, 287, 1400, 3444, 4032, 1728;
%e 1, 14, 13;
%e 1, 24, 163, 336, 196;
%e 1, 24, 158, 360, 225;
%e 1, 31, 310, 1240, 1984, 1024;
%e ...
%p with(numtheory):
%p T:= proc(n) local p;
%p p:= mul(1+d*x, d=divisors(n));
%p seq(coeff(p, x, k), k=0..degree(p))
%p end:
%p seq(T(n), n=0..30); # _Alois P. Heinz_, Apr 05 2013
%t T[n_] := CoefficientList[Product[1+d*x, {d, Divisors[n]}], x]; T[0] = {1};
%t Array[T, 20, 0] // Flatten (* _Jean-François Alcover_, Mar 27 2017 *)
%Y Columns k=0-3 give: A000012, A000203, A119616, A067817.
%Y Row lengths are: A000005(n)+1.
%Y Last elements of rows give: A007955.
%K nonn,look,tabf
%O 0,5
%A _Philippe Deléham_, Apr 05 2013