login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of coefficients in the expansion of product((1+d_i*x), d_i|n).
4

%I #21 Mar 18 2023 17:31:41

%S 1,1,1,1,3,2,1,4,3,1,7,14,8,1,6,5,1,12,47,72,36,1,8,7,1,15,70,120,64,

%T 1,13,39,27,1,18,97,180,100,1,12,11,1,28,287,1400,3444,4032,1728,1,14,

%U 13,1,24,163,336,196,1,24,158,360,225,1,31,310,1240,1984,1024

%N Table of coefficients in the expansion of product((1+d_i*x), d_i|n).

%H Alois P. Heinz, <a href="/A224381/b224381.txt">Rows n = 0..1500, flattened</a>

%F T(n,k) = [x^k] Product_{d|n} (1+d*x).

%e Row n = 6 : 1, 12, 47, 72, 36 because (1+x)*(1+2x)*(1+3x)*(1+6x) = 1 + 12*x + 47*x^2 + 72*x^3 + 36*x^4.

%e Table begins :

%e 1;

%e 1, 1;

%e 1, 3, 2;

%e 1, 4, 3;

%e 1, 7, 14, 8;

%e 1, 6, 5;

%e 1, 12, 47, 72, 36;

%e 1, 8, 7;

%e 1, 15, 70, 120, 64;

%e 1, 13, 39, 27;

%e 1, 18, 97, 180, 100;

%e 1, 12, 11;

%e 1, 28, 287, 1400, 3444, 4032, 1728;

%e 1, 14, 13;

%e 1, 24, 163, 336, 196;

%e 1, 24, 158, 360, 225;

%e 1, 31, 310, 1240, 1984, 1024;

%e ...

%p with(numtheory):

%p T:= proc(n) local p;

%p p:= mul(1+d*x, d=divisors(n));

%p seq(coeff(p, x, k), k=0..degree(p))

%p end:

%p seq(T(n), n=0..30); # _Alois P. Heinz_, Apr 05 2013

%t T[n_] := CoefficientList[Product[1+d*x, {d, Divisors[n]}], x]; T[0] = {1};

%t Array[T, 20, 0] // Flatten (* _Jean-François Alcover_, Mar 27 2017 *)

%Y Columns k=0-3 give: A000012, A000203, A119616, A067817.

%Y Row lengths are: A000005(n)+1.

%Y Last elements of rows give: A007955.

%K nonn,look,tabf

%O 0,5

%A _Philippe Deléham_, Apr 05 2013