OFFSET
1,2
COMMENTS
Contains the terms of A054753 (products p*q^2 of a prime p and the square of a different prime q), 1, and p^5, where p is prime.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
FORMULA
{1} UNION A030515. - R. J. Mathar, Jul 19 2009
Numbers k such that k^2 = product of proper divisors of k. - Juri-Stepan Gerasimov, May 03 2011
EXAMPLE
18 is in the sequence because the product of its divisors is 1 * 2 * 3 * 6 * 9 * 18 = 18^3.
MATHEMATICA
Select[Range[500], Surd[Times@@Divisors[#], 3] == # &] (* Harvey P. Dale, Mar 15 2017 *)
PROG
(PARI) isok(n) = my(d = divisors(n)); prod(i=1, #d, d[i]) == n^3; \\ Michel Marcus, Feb 04 2014
(Python)
from itertools import chain, count, islice
from sympy import divisor_count
def A162947_gen(): # generator of terms
return chain((1, ), filter(lambda n:divisor_count(n)==6, count(2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Claudio Meller, Jul 18 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 19 2009
STATUS
approved