login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162948
Numbers with a sum of digits equal to their smallest prime factor.
1
2, 3, 5, 7, 20, 21, 110, 111, 133, 200, 201, 209, 247, 407, 481, 511, 629, 803, 1010, 1011, 1100, 1101, 1141, 1387, 1417, 1651, 1679, 1853, 2000, 2001, 2023, 2119, 2159, 2353, 2401, 2771, 3031, 3077, 3097, 3383, 3439, 3523, 3749, 3781, 4577, 4607, 4913, 5149, 5161
OFFSET
1,1
LINKS
FORMULA
{n: A007953(n) = A020639(n)}. - R. J. Mathar, Jul 19 2009
EXAMPLE
133 is in the sequence because 1 + 3 + 3 = 7 and 7 is the smallest prime factor of 133.
MAPLE
A007953 := proc(n) local d; add(d, d=convert(n, base, 10)) ; end:
A020639 := proc(n) min(op(numtheory[factorset](n) )) ; end:
isA162948 := proc(n) RETURN( A007953(n) = A020639(n)) ; end:
for n from 1 to 6000 do if isA162948(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Jul 19 2009
CROSSREFS
Even terms: A069537.
Sequence in context: A110457 A320584 A209191 * A024768 A024769 A340112
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jul 18 2009
EXTENSIONS
Single-digit primes added by R. J. Mathar, Jul 19 2009
STATUS
approved