OFFSET
1,1
COMMENTS
n is either of the form p^k where p is prime and k+1 is in A006881 or p1^k1*p2^k2 where p1 and p2 are distinct primes and k1+1 and k2+1 are distinct primes. - Robert Israel, Dec 31 2014
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Amritpal Singh, c++ program for generating the sequence
EXAMPLE
12 has 6 divisors, and 6 is the product of two distinct primes, 2 and 3.
MAPLE
filter:= proc(n) local F;
F:= ifactors(numtheory:-tau(n))[2];
nops(F)=2 and F[1, 2]=1 and F[2, 2]=1;
end proc:
select(filter, [$1..1000]); # Robert Israel, Dec 31 2014
MATHEMATICA
a253388Q[x_] := Block[{d = FactorInteger[DivisorSigma[0, x]]},
Length[d] == 2 && Max[Last@Transpose@d] == 1]; a253388[n_] := Select[Range@n, a253388Q]; a253388[333] (* Michael De Vlieger, Jan 02 2015 *)
fQ[x_] := PrimeOmega@ x == 2 == PrimeNu@ x; Select[ Range@ 250, fQ[ DivisorSigma[0, #]] &] (* Robert G. Wilson v, Jan 13 2015 *)
PROG
(PARI) isok(n) = (nbd = numdiv(n)) && (omega(nbd) == 2) && (bigomega(nbd) == 2); \\ Michel Marcus, Feb 07 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Amritpal Singh, Dec 31 2014
STATUS
approved