login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263189
Coefficient of y^0 in G(x,y)^4 where G(x,y) = Sum_{n=-oo..+oo} (1-x^n)^n * x^n * y^n.
1
1, -12, 18, 20, 24, -96, -4, -120, 138, -116, 456, -132, 356, -540, 900, -1884, 1440, -2076, 1546, -3204, 5772, -6572, 7860, -7440, 12240, -13128, 15828, -18632, 23916, -31344, 34008, -45084, 44118, -44940, 53748, -95316, 125500, -119136, 103632, -100772, 156048, -238668, 332896, -334596, 293616, -253552, 335352, -591780, 833340, -789012, 572634, -678492, 998508, -1350228, 1632840, -1863108, 1749036, -1538120, 1841244, -2950512, 3959160, -3671160, 3113532, -3879628, 5512488, -6007836, 6159684, -7625868, 9420576, -8502888, 7725780, -12080952, 16859826, -14906736, 12391572, -18666168, 26180532, -23512824, 18486132, -29125692, 43754556
OFFSET
0,2
COMMENTS
Compare to the coefficient of y^0 in G(x,y)^2, which equals theta_4(x) = 1 - 2*x + 2*x^4 - 2*x^9 + 2*x^16 - 2*x^25 +...+ 2*(-x)^(n^2) +..., where G(x,y) = Sum_{n=-oo..+oo} (1-x^n)^n * x^n * y^n.
Note the curious identity: Sum_{n=-oo..+oo} (1-x^n)^n * x^n = 0.
EXAMPLE
G.f.: A(x) = 1 - 12*x + 18*x^2 + 20*x^3 + 24*x^4 - 96*x^5 - 4*x^6 - 120*x^7 + 138*x^8 - 116*x^9 + 456*x^10 - 132*x^11 + 356*x^12 - 540*x^13 + 900*x^14 +...
such that A(x) is the coefficient of y^0 in G(x,y)^4 where
G(x,y) = N(x,y) + P(x,y), with
P(x,y) = 1 + x*y*(1-x) + (x*y)^2*(1-x^2)^2 + (x*y)^3*(1-x^3)^3 + (x*y)^4*(1-x^4)^4 + (x*y)^5*(1-x^5)^5 + (x*y)^6*(1-x^6)^6 +...+ (x*y)^n*(1-x^n)^n +...
N(x,y) = (-1/y)/(1-x) + (x/y)^2/(1-x^2)^2 + (-x^2/y)^3/(1-x^3)^3 + (x^3/y)^4/(1-x^4)^4 + (-x^4/y)^5/(1-x^5)^5 +...+ (-x^(n-1)/y)^n/(1-x^n)^n +...
PROG
(PARI) {a(n) = my(A=sum(m=-sqrtint(n)-1, n+1, x^m*(1-x^m)^m*y^m +x*O(x^n))); polcoeff(polcoeff(A^4, 0, y), n, x)}
for(n=0, 80, print1(a(n), ", "))
CROSSREFS
Cf. A263188.
Sequence in context: A153501 A215012 A181595 * A263838 A217856 A253388
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 05 2015
STATUS
approved