login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263192
Decimal expansion of Sum_{n >= 1} cos(n)/sqrt(n), negated.
6
1, 9, 4, 1, 0, 8, 9, 3, 5, 0, 9, 2, 1, 8, 2, 0, 4, 9, 7, 3, 9, 1, 4, 9, 2, 4, 4, 9, 2, 8, 1, 9, 4, 7, 2, 6, 6, 3, 5, 3, 2, 0, 5, 5, 2, 6, 3, 4, 0, 4, 7, 8, 1, 5, 4, 0, 2, 3, 9, 8, 3, 7, 6, 6, 0, 9, 5, 6, 6, 6, 8, 3, 7, 2, 6, 2, 5, 5, 4, 7, 6, 4, 0, 0, 6, 5, 3, 1, 8, 9, 6, 4, 9, 6, 5, 5, 2, 4, 7, 0, 1, 2, 2, 6, 8, 3, 5, 1, 9
OFFSET
0,2
COMMENTS
A slowly convergent series. It may be efficiently computed via the Hurwitz zeta-function (see formula below).
LINKS
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, Journal of Number Theory (Elsevier), vol. 148, pp. 537-592 & vol. 151, pp. 276-277, 2015. arXiv version, arXiv:1401.3724 [math.NT].
FORMULA
(Zeta(1/2, 1/(2*Pi)) + Zeta(1/2, 1-1/(2*Pi)))/2, see formula (26) in the reference.
EXAMPLE
-0.1941089350921820497391492449281947266353205526340478...
MAPLE
evalf(1/2*(Zeta(0, 1/2, 1/(2*Pi)) + Zeta(0, 1/2, 1-1/(2*Pi))), 120);
MATHEMATICA
N[(Zeta[1/2, 1/(2*Pi)] + Zeta[1/2, 1 - 1/(2*Pi)])/2, 200]
RealDigits[Re[(1/2)*(PolyLog[1/2, E^(-I)] + PolyLog[1/2, E^I])], 10, 109][[1]] (* Vaclav Kotesovec, Oct 31 2015 *)
PROG
(PARI) zetahurwitz(1/2, 1/Pi/2)/2 + zetahurwitz(1/2, 1-1/Pi/2)/2 \\ Charles R Greathouse IV, Jan 30 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved