login
A243103
Product of numbers m with 2 <= m <= n whose prime divisors all divide n.
9
1, 2, 3, 8, 5, 144, 7, 64, 27, 3200, 11, 124416, 13, 6272, 2025, 1024, 17, 35831808, 19, 1024000, 3969, 247808, 23, 859963392, 125, 346112, 729, 2809856, 29, 261213880320000000, 31, 32768, 264627, 18939904, 30625, 26748301344768, 37, 23658496, 369603, 32768000000, 41
OFFSET
1,2
COMMENTS
This sequence is the product of n-regular numbers.
A number m is said to be "regular" to n or "n-regular" if all the prime factors p of m also divide n.
The divisor is a special case of a regular m such that m also divides n in addition to all of its prime factors p | n.
Analogous to A007955 (Product of divisors of n).
If n is 1 or prime, a(n) = n.
If n is a prime power, a(n) = A007955(n).
Note: b-file ends at n = 4619, because a(4620) has more than 1000 decimal digits.
Product of the numbers 1 <= k <= n such that (floor(n^k/k) - floor((n^k - 1)/k)) = 1. - Michael De Vlieger, May 26 2016
LINKS
Encyclopedia Britannica, Regular Number (base-neutral definition)
Eric W. Weisstein, Regular Number (decimal definition)
Wikipedia, Regular Number (sexagesimal / Hamming number definition)
FORMULA
a(n) = product of terms of n-th row of irregular triangle A162306(n,k).
a(n) = Product_{k=1..n} k^( floor(n^k/k)-floor((n^k -1)/k) ). - Anthony Browne, Jul 06 2016
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = Product_{k=2..n, A123275(n,k)=1} k.
For n >= 1, A046523(a(n)) = A283990(n).
(End)
EXAMPLE
a(12) = 124416 since 1 * 2 * 3 * 4 * 6 * 8 * 9 * 12 = 124416. These numbers are products of prime factors that are the distinct prime divisors of 12 = {2, 3}.
From David A. Corneth, Feb 09 2015: (Start)
Let p# be the product of primes up to p, A002110. Then
a(13#) ~= 8.3069582 * 10 ^ 4133
a(17#) ~= 1.3953000 * 10 ^ 22689
a(19#) ~= 3.8258936 * 10 ^ 117373
a(23#) ~= 6.7960327 * 10 ^ 594048
a(29#) ~= 1.3276817 * 10 ^ 2983168
a(31#) ~= 2.8152792 * 10 ^ 14493041
a(37#) ~= 1.9753840 * 10 ^ 69927040
Up to n = 11# already in the table.
(End)
MAPLE
A:= proc(n) local F, S, s, j, p;
F:= numtheory:-factorset(n);
S:= {1};
for p in F do
S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)}
od;
convert(S, `*`)
end proc:
seq(A(n), n=1..100); # Robert Israel, Feb 09 2015
MATHEMATICA
regularQ[m_Integer, n_Integer] := Module[{omega = First /@ FactorInteger @ m }, If[Length[Select[omega, Divisible[n, #] &]] == Length[omega], True, False]]; a20140819[n_Integer] := Times @@ Flatten[Position[Thread[regularQ[Range[1, n], n]], True]]; a20140819 /@ Range[41]
regulars[n_] := Block[{f, a}, f[x_] := First /@ FactorInteger@ x; a = f[n]; {1}~Join~Select[Range@ n, SubsetQ[a, f@ #] &]]; Array[Times @@ regulars@ # &, 12] (* Michael De Vlieger, Feb 09 2015 *)
Table[Times @@ Select[Range@ n, (Floor[n^#/#] - Floor[(n^# - 1)/#]) == 1 &], {n, 41}] (* Michael De Vlieger, May 26 2016 *)
PROG
(PARI) lista(nn) = {vf = vector(nn, n, Set(factor(n)[, 1])); vector(nn, n, prod(i=1, n, if (setintersect(vf[i], vf[n]) == vf[i], i, 1))); } \\ Michel Marcus, Aug 23 2014
(PARI) for(n=1, 100, print1(prod(k=1, n, k^(floor(n^k/k) - floor((n^k - 1)/k))), ", ")) \\ Indranil Ghosh, Mar 22 2017
(Python)
from sympy import primefactors
def A243103(n):
y, pf = 1, set(primefactors(n))
for m in range(2, n+1):
if set(primefactors(m)) <= pf:
y *= m
return y # Chai Wah Wu, Aug 28 2014
(Scheme)
;; A naive implementation, code for A123275bi given under A123275:
(define (A243103 n) (let loop ((k n) (m 1)) (cond ((= 1 k) m) ((= 1 (A123275bi n k)) (loop (- k 1) (* m k))) (else (loop (- k 1) m)))))
;; Antti Karttunen, Mar 22 2017
CROSSREFS
Cf. A162306 (irregular triangle of regular numbers of n), A010846 (number of regular numbers of n), A244974 (sum of regular numbers of n), A007955, A244052 (record transform of regular numbers of n).
Sequence in context: A136182 A170911 A067911 * A051696 A066570 A073656
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Aug 19 2014
STATUS
approved