login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066570
Product of numbers <= n that have a prime factor in common with n.
7
1, 2, 3, 8, 5, 144, 7, 384, 162, 19200, 11, 1244160, 13, 4515840, 1458000, 10321920, 17, 75246796800, 19, 278691840000, 1080203040, 899245670400, 23, 16686729658368000, 375000, 663152807116800, 7142567040, 209964381084057600, 29, 1229978843118305280000000
OFFSET
1,2
COMMENTS
Empty product, 1, for n = 1.
a(p) = p if p is a prime.
FORMULA
a(n) = n!/A001783(n).
a(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n) (see A216919). - Peter Luschny, Oct 02 2012
EXAMPLE
a(7) = 7, a(9) = 3*6*9 = 162.
MAPLE
A066570 := proc(n) local i; mul(i, i=remove(k->igcd(n, k)=1, [$1..n])) end: # Peter Luschny, Oct 11 2011
MATHEMATICA
Table[Times @@ Select[Range[2, n], GCD[#, n] > 1 &], {n, 30}] (* T. D. Noe, Oct 04 2012 *)
PROG
(Sage)
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
def A066570(n): return Gauss_factorial(n, 1)/Gauss_factorial(n, n)
[A066570(n) for n in (1..30)] # Peter Luschny, Oct 02 2012
(PARI) a(n) = prod(k=1, n, if (gcd(k, n) != 1, k, 1)); \\ Michel Marcus, Nov 02 2017
CROSSREFS
Sequence in context: A067911 A243103 A051696 * A073656 A047930 A349100
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Dec 19 2001
STATUS
approved