Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 02 2017 15:30:38
%S 1,2,3,8,5,144,7,384,162,19200,11,1244160,13,4515840,1458000,10321920,
%T 17,75246796800,19,278691840000,1080203040,899245670400,23,
%U 16686729658368000,375000,663152807116800,7142567040,209964381084057600,29,1229978843118305280000000
%N Product of numbers <= n that have a prime factor in common with n.
%C Empty product, 1, for n = 1.
%C a(p) = p if p is a prime.
%H T. D. Noe, <a href="/A066570/b066570.txt">Table of n, a(n) for n = 1..200</a>
%F a(n) = n!/A001783(n).
%F a(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n) (see A216919). - _Peter Luschny_, Oct 02 2012
%e a(7) = 7, a(9) = 3*6*9 = 162.
%p A066570 := proc(n) local i; mul(i,i=remove(k->igcd(n,k)=1,[$1..n])) end: # _Peter Luschny_, Oct 11 2011
%t Table[Times @@ Select[Range[2, n], GCD[#, n] > 1 &], {n, 30}] (* _T. D. Noe_, Oct 04 2012 *)
%o (Sage)
%o def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
%o def A066570(n): return Gauss_factorial(n, 1)/Gauss_factorial(n, n)
%o [A066570(n) for n in (1..30)] # _Peter Luschny_, Oct 02 2012
%o (PARI) a(n) = prod(k=1, n, if (gcd(k, n) != 1, k, 1)); \\ _Michel Marcus_, Nov 02 2017
%Y Cf. A001783, A216919.
%K nonn,easy
%O 1,2
%A _Amarnath Murthy_, Dec 19 2001