login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243104
Odd numbers in A192274.
1
945, 1575, 2205, 2835, 3465, 4095, 4725, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8505, 8925, 9135, 9555, 9765, 10395, 11655, 12285, 12915, 13545, 14805, 15015, 16065, 16695, 17955, 18585, 19215, 19635, 19845, 20475, 21105, 21735, 22275, 22365, 22995, 23205
OFFSET
1,1
LINKS
PROG
(Python)
from sympy import divisors
import numpy as np
A243104 = []
for n in range(3, 10**4, 2):
....d = divisors(n)
....s = sum(d)
....if not s % 2 and 2*n <= s:
........d.remove(n)
........s2, ld = int(s/2-n), len(d)
........z = np.zeros((ld+1, s2+1), dtype=int)
........for i in range(1, ld+1):
............y = min(d[i-1], s2+1)
............z[i, range(y)] = z[i-1, range(y)]
............z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)
............if z[i, s2] == s2:
................d2 = [2*x for x in d if n > 2*x and n % (2*x)] + \
................[x for x in divisors(2*n-1) if n > x >=2 and n % x] + \
................[x for x in divisors(2*n+1) if n > x >=2 and n % x]
................s, dmax = sum(d2), max(d2)
................if not s % 2 and 2*dmax <= s:
....................d2.remove(dmax)
....................s2, ld = int(s/2-dmax), len(d2)
....................z = np.zeros((ld+1, s2+1), dtype=int)
....................for i in range(1, ld+1):
........................y = min(d2[i-1], s2+1)
........................z[i, range(y)] = z[i-1, range(y)]
........................z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)
........................if z[i, s2] == s2:
............................A243104.append(n)
............................break
................break
CROSSREFS
Cf. A192274.
Sequence in context: A005231 A174865 A174535 * A006038 A287646 A316116
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Aug 19 2014
STATUS
approved