OFFSET
5,1
COMMENTS
This triangle is the analog of A188439 for A001222 ("bigomega", total number of prime factors) instead of A001221 ("omega", distinct prime divisors). It starts with row 5, since there is no odd primitive abundant number, N in A006038, with less than A001222(N) = 5 prime factors (counted with multiplicity).
Sequence A287728 gives the row lengths: Row 5 has 121 terms (945, 1575, 2205, 3465, 4095, ..., 430815, 437745, 442365). This mostly equals the initial terms of A006038, except for those with indices {12, 39, 40, 45, 48, 54, ..., 87}. These are in turn mostly (except for the 17th and 18th term) those of the subsequent row 6 which has 15772 terms, (7425, 28215, 29835, 33345, 34155, ..., 13443355695, 13446051465, 13455037365).
PROG
(PARI) A287646_row( r, p=3, a=2, n=1/(a-1))={ r>1 || return(if(n>=p, primes([p, n]))); p<n && p=nextprime(n); my(e=1, S=if(p-1/p^r>(p-1)*a && p-1/p^(r-1)<(p-1)*a, [p^r], []), ap=1, np=nextprime(p+1)); until( 0, if( (1+1/np)^(r-e) > (aa = a/ap += 1/p^e) && aa > 1, if(n=A287646_row(r-e, np, aa), if(e>1, my(aaa=a/(ap-1/p^e)); n=select(t->sigma(t, -1)<aaa, n)); S=setunion(S, p^e*n); e++<r && next), n=0); e>1 || n || break; np=nextprime((e=ap=1)+p=np)); S}
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
M. F. Hasler, May 30 2017
STATUS
approved