|
COMMENTS
|
Same as the maximum number of transversals in a Latin square of order n except n = 3.
a(10) >= 5504 from Parker and Brown.
Every diagonal Latin square is a Latin square and every orthogonal diagonal Latin square is a diagonal Latin square, so 0 <= A287645(n) <= A357514(n) <= a(n) <= A090741(n). - Eduard I. Vatutin, added Sep 20 2020, updated Mar 03 2023
a(11) >= 37851, a(12) >= 198144, a(13) >= 1030367, a(14) >= 3477504, a(15) >= 36362925, a(16) >= 244744192, a(17) >= 1606008513, a(19) >= 87656896891, a(23) >= 452794797220965, a(25) >= 41609568918940625. - Eduard I. Vatutin, Mar 08 2020, updated Mar 10 2022
Also a(n) is the maximum number of transversals in an orthogonal diagonal Latin square of order n for all orders except n=6 where orthogonal diagonal Latin squares don't exist. - Eduard I. Vatutin, Jan 23 2022
All cyclic diagonal Latin squares are diagonal Latin squares, so A348212((n-1)/2) <= a(n) for all orders n of which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 25 2021
|
|
REFERENCES
|
J. W. Brown et al., Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, volume 139 (1992), pp. 43-49.
E. T. Parker, Computer investigations of orthogonal Latin squares of order 10, Proc. Sympos. Appl. Math., volume 15 (1963), pp. 73-81.
|
|
LINKS
|
Table of n, a(n) for n=1..9.
E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru.
E. I. Vatutin, About the minimal and maximal number of transversals in a diagonal Latin squares of order 9 (in Russian).
Eduard I. Vatutin, Enumerating the Main Classes of Cyclic and Pandiagonal Latin Squares, Recognition — 2021, pp. 77-79. (in Russian)
Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer, Cham (2020), 127-146.
E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, Estimating of combinatorial characteristics for diagonal Latin squares, Recognition — 2017 (2017), pp. 98-100 (in Russian).
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, and V. S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017, pp. 6-14. urn:nbn:de:0074-1973-0.
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Using Volunteer Computing to Study Some Features of Diagonal Latin Squares. Open Engineering. Vol. 7. Iss. 1. 2017, pp. 453-460. DOI: 10.1515/eng-2017-0052
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, and V. S. Titov, Estimating the Number of Transversals for Diagonal Latin Squares of Small Order, Telecommunications. 2018. No. 1, pp. 12-21 (in Russian).
Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021, pp. 7-17. (in Russian)
E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022, pp. 314-315.
Eduard I. Vatutin, Proving list (best known examples).
Index entries for sequences related to Latin squares and rectangles.
|