login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006038 Odd primitive abundant numbers.
(Formerly M5486)
19
945, 1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 7425, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 18585, 19215, 19635, 21105, 21945, 22365, 22995, 23205, 24885, 25935, 26145, 26565, 28035, 28215 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. Sequence A188342 lists the smallest such numbers. - T. D. Noe, Mar 28 2011

Sequence A188439 sorts the numbers in this sequence by the number of distinct prime factors. Eight numbers have exactly three prime factors; 576 have exactly four prime factors. - T. D. Noe, Apr 04 2011

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.

Eric W. Weisstein, MathWorld: Primitive Abundant Number

MAPLE

isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:

isA005100 := proc(n) is(numtheory[sigma](n) < 2*n ); end proc:

isA006038 := proc(n) local d; if type(n, 'odd') and isA005101(n) then for d in numtheory[divisors](n) minus {1, n} do if not isA005100(d) then return false; end if; end do: return true; else false; end if; end proc:

n := 1 ; for a from 1 by 2 do if isA006038(a) then printf("%d %d\n", n, a) ; n := n+1 ; end if; end do: # R. J. Mathar, Mar 28 2011

MATHEMATICA

t = {}; n = 1; While[Length[t] < 50, n = n + 2; If[DivisorSigma[1, n] > 2 n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)

PROG

(PARI) is(n)=n%2 && sumdiv(n, d, sigma(d, -1)>2)==1 \\ Charles R Greathouse IV, Jun 10 2013

(Haskell)

a006038 n = a006038_list !! (n-1)

a006038_list = filter f [1, 3 ..] where

   f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)

         where pdivs = a027751_row x

-- Reinhard Zumkeller, Jan 31 2014

CROSSREFS

Cf. A005101, A005231. Subsequence of A091191.

Cf. A000203, A027751.

Sequence in context: A174865 A174535 A243104 * A188439 A127667 A252184

Adjacent sequences:  A006035 A006036 A006037 * A006039 A006040 A006041

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 28 14:23 EDT 2015. Contains 257097 sequences.