login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188342 Smallest odd primitive abundant number (A006038) having n distinct prime factors. 4
945, 3465, 15015, 692835, 22309287, 1542773001, 33426748355, 1635754104985, 114761064312895, 9316511857401385, 879315530560980695 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. For n=3, there are 8 such numbers: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375. See A188439.

a(14) <= 88452776289145528645. - Donovan Johnson, Mar 31 2011

a(15) <= 2792580508557308832935, a(16) <= 428525983200229616718445, a(17) <= 42163230434005200984080045. If these a(n) are squarefree and don't have a greatest prime factor more than 3 primes away from that of the preceding term, then these bounds are the actual values of a(n). The PARI code needs only fractions of a second to compute further bounds, which under the given hypotheses are the actual values of a(n).  - M. F. Hasler, Jul 17 2016

LINKS

Table of n, a(n) for n=3..13.

L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.

H. N. Shapiro, Note on a theorem of Dickson, Bull Amer. Math. Soc. 55 (4) (1949), 450-452

EXAMPLE

From M. F. Hasler, Jul 17 2016: (Start)

               945 = 3^3 * 5 * 7

              3465 = 3^2 * 5 * 7 * 11

             15015 = 3 * 5 * 7 * 11 * 13

            692835 = 3 * 5 * 11 * 13 * 17 * 19     (n=6: gpf increases by 2 primes)

          22309287 = 3 * 7 * 11 * 13 * 17 * 19 * 23

        1542773001 = 3 * 7 * 11 * 17 * 19 * 23 * 29 * 31

       33426748355 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31

     1635754104985 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 37 * 41     (here too)

   114761064312895 = 5 * 7 * 11 * 13 * 17 * 23 * 29 * 31 * 37 * 41 * 43

  9316511857401385 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47

879315530560980695 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 53 * 59 * 61 (n=13: gpf increases for the first time by 3 primes) (End)

PROG

(PARI) A188342=[0, 0, 945, 3465]; a(n, D(n)=n\6+1)={while(n>#A188342, my(S=#A188342, T=factor(A188342[S])[, 1], M=[primepi(T[1]), primepi(T[#T])+D(S++)], best=prime(M[2])^S); forvec(v=vector(S, i, M), best>(T=prod(i=1, #v, prime(v[i]))) && (S=prod(i=1, #v, prime(v[i])+1)-T*2)>0 && S*prime(v[#v])<T*2 && best=T, 2); A188342=concat(A188342, best)); A188342[n]} \\ Assuming a(n) squarefree for n>4, search is exhaustive within the limit primepi(gpf(a(n))) <= primepi(gpf(a(n-1)))+D(n), with D(n) given as optional 2nd arg. - M. F. Hasler, Jul 17 2016

CROSSREFS

Sequence in context: A127667 A252184 A188263 * A109729 A275449 A127666

Adjacent sequences:  A188339 A188340 A188341 * A188343 A188344 A188345

KEYWORD

nonn,more

AUTHOR

T. D. Noe, Mar 28 2011

EXTENSIONS

a(8)-a(12) from Donovan Johnson, Mar 29 2011

a(13) from Donovan Johnson, Mar 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 29 15:26 EDT 2016. Contains 275945 sequences.