

A188342


Smallest odd primitive abundant number (A006038) having n distinct prime factors.


2



945, 3465, 15015, 692835, 22309287, 1542773001, 33426748355, 1635754104985, 114761064312895, 9316511857401385, 879315530560980695
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. For n=3, there are 8 such numbers: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375. See A188439.
a(14) <= 88452776289145528645.  Donovan Johnson, Mar 31 2011


LINKS

Table of n, a(n) for n=3..13.
L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413422.
H. N. Shapiro, Note on a theorem of Dickson, Bull Amer. Math. Soc. 55 (4) (1949), 450452


CROSSREFS

Sequence in context: A127667 A252184 A188263 * A109729 A127666 A133818
Adjacent sequences: A188339 A188340 A188341 * A188343 A188344 A188345


KEYWORD

nonn,more


AUTHOR

T. D. Noe, Mar 28 2011


EXTENSIONS

a(8)a(12) from Donovan Johnson, Mar 29 2011
a(13) from Donovan Johnson, Mar 31 2011


STATUS

approved



