login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188342 Smallest odd primitive abundant number (A006038) having n distinct prime factors. 4
945, 3465, 15015, 692835, 22309287, 1542773001, 33426748355, 1635754104985, 114761064312895, 9316511857401385, 879315530560980695 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. For n=3, there are 8 such numbers: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375. See A188439.

a(14) <= 88452776289145528645. - Donovan Johnson, Mar 31 2011

a(15) <= 2792580508557308832935, a(16) <= 428525983200229616718445, a(17) <= 42163230434005200984080045. If these a(n) are squarefree and don't have a greatest prime factor more than 3 primes away from that of the preceding term, then these bounds are the actual values of a(n). The PARI code needs only fractions of a second to compute further bounds, which under the given hypotheses are the actual values of a(n).  - M. F. Hasler, Jul 17 2016

LINKS

Table of n, a(n) for n=3..13.

L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.

H. N. Shapiro, Note on a theorem of Dickson, Bull Amer. Math. Soc. 55 (4) (1949), 450-452

EXAMPLE

From M. F. Hasler, Jul 17 2016: (Start)

               945 = 3^3 * 5 * 7

              3465 = 3^2 * 5 * 7 * 11

             15015 = 3 * 5 * 7 * 11 * 13

            692835 = 3 * 5 * 11 * 13 * 17 * 19     (n=6: gpf increases by 2 primes)

          22309287 = 3 * 7 * 11 * 13 * 17 * 19 * 23

        1542773001 = 3 * 7 * 11 * 17 * 19 * 23 * 29 * 31

       33426748355 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31

     1635754104985 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 37 * 41     (here too)

   114761064312895 = 5 * 7 * 11 * 13 * 17 * 23 * 29 * 31 * 37 * 41 * 43

  9316511857401385 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47

879315530560980695 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 53 * 59 * 61 (n=13: gpf increases for the first time by 3 primes) (End)

PROG

(PARI) A188342=[0, 0, 945, 3465]; a(n, D(n)=n\6+1)={while(n>#A188342, my(S=#A188342, T=factor(A188342[S])[, 1], M=[primepi(T[1]), primepi(T[#T])+D(S++)], best=prime(M[2])^S); forvec(v=vector(S, i, M), best>(T=prod(i=1, #v, prime(v[i]))) && (S=prod(i=1, #v, prime(v[i])+1)-T*2)>0 && S*prime(v[#v])<T*2 && best=T, 2); A188342=concat(A188342, best)); A188342[n]} \\ Assuming a(n) squarefree for n>4, search is exhaustive within the limit primepi(gpf(a(n))) <= primepi(gpf(a(n-1)))+D(n), with D(n) given as optional 2nd arg. - M. F. Hasler, Jul 17 2016

CROSSREFS

Sequence in context: A127667 A252184 A188263 * A109729 A275449 A127666

Adjacent sequences:  A188339 A188340 A188341 * A188343 A188344 A188345

KEYWORD

nonn,more

AUTHOR

T. D. Noe, Mar 28 2011

EXTENSIONS

a(8)-a(12) from Donovan Johnson, Mar 29 2011

a(13) from Donovan Johnson, Mar 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 14:49 EST 2016. Contains 278781 sequences.