OFFSET
1,1
COMMENTS
The corresponding gaps are 630, 420, 210, 180, 90, 30, 18, 6.
The upper ends are 1575, 5775, 5985, 6615, 8505, 34155, 1828845, 3321765915, ...
Emmanuel Vantieghem has determined that for k = 76728582876430878992529528245373 the numbers k and k+2 are abundant, so the last term of this sequence is <= k. - Giovanni Resta, Nov 09 2017
LINKS
EXAMPLE
Odd abundant numbers are 945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, ...
Their differences are 630, 630, 630, 630, 630, 630, 630, 420, 210, 450, 180, ...
The records of small differences are 630, 420, 210, 180, ...
And the corresponding terms are 945, 5355, 5775, 6435, ...
MATHEMATICA
oaQ[n_] := OddQ[n] && DivisorSigma[1, n] > 2 n; s = Select[Range[100000], oaQ]; a={}; dmin = 1000; Do[d=s[[j+1]]-s[[j]]; If[d<dmin, AppendTo[a, s[[j]]]; dmin=d], {j, 1, Length[s]-1}]; a
PROG
(PARI) lista(nn) = {lastoa = 0; mg = oo; forstep (n=1, nn, 2, if (sigma(n) > 2*n, if (! lastoa, lastoa = n, if ((nmg = n - lastoa) < mg, mg = nmg; print1(lastoa, ", "))); lastoa = n; ); ); } \\ Michel Marcus, Nov 09 2017
CROSSREFS
KEYWORD
nonn,fini,more
AUTHOR
Amiram Eldar, Oct 22 2017
EXTENSIONS
a(8) from Giovanni Resta, Nov 09 2017
STATUS
approved