OFFSET
1,1
COMMENTS
The corresponding gaps are 4620, 2310, 1260, 630, 420, 330, 210, 180, 120, 30.
The upper ends are 19635, 21945, 23205, 26565, 33915, 1752465, 1915305, 1915485, 119104755, 134877435, ...
The unitary version of A294025.
No more terms below 10^9.
10^13 < a(11) <= 42229304608764255 (gap 18), while t = 220730839027951785 and t+6 are a pair with gap 6. - Giovanni Resta, May 07 2020
EXAMPLE
Odd unitary abundant numbers are 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, ...
Their differences are 4620, 2310, 1260, 2730, 630, 4830, 2100, 420, ...
The records of small differences are 4620, 2310, 1260, 630, 420, ...
And the corresponding terms are 15015, 19635, 21945, 25935, 33495, ...
MATHEMATICA
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; ouaQ[n_] := OddQ[n] && usigma[n] > 2 n; s = Select[Range[100000], ouaQ]; a={}; dmin = 5000; Do[d=s[[j+1]]-s[[j]]; If[d<dmin, AppendTo[a, s[[j]]]; dmin=d], {j, 1, Length[s]-1}]; a
PROG
(PARI) usig(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d));
isok(n) = (n%2) && (usig(n) > 2*n);
lista(nn) = {last = 0; gap = oo; forstep(n=1, nn, 2, if (isok(n), if (last, if (n - last < gap, print1(last, ", "); gap = n - last)); last = n; ); ); } \\ Michel Marcus, Dec 15 2017
CROSSREFS
KEYWORD
nonn,fini,more
AUTHOR
Amiram Eldar, Oct 22 2017
STATUS
approved