login
A294029
Values of bsigma(k) = bsigma(k+1), where bsigma is the sum of the bi-unitary divisors (A188999).
1
24, 40, 60, 720, 960, 1440, 2160, 2640, 2400, 3000, 4320, 4320, 4320, 5280, 7400, 11520, 11880, 12960, 14400, 20160, 30240, 26640, 34560, 25200, 34560, 49920, 51840, 60480, 63360, 60480, 65280, 62400, 61560, 115200, 93600, 114912, 100800, 120960, 120960
OFFSET
1,1
COMMENTS
The sum of bi-unitary divisors of numbers n such that n and n+1 have the same sum (A293183).
The bi-unitary version of A053215.
LINKS
FORMULA
a(n) = A188999(A293183(n)).
EXAMPLE
24 is in the sequence since 24 = bsigma(14) = bsigma(15).
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; b1 = 0; For[k = 0, k < 10^6, k++; b2 = bsigma[k]; If[b1 == b2, a = AppendTo[a, b1]]; b1 = b2]; a (* after Michael De Vlieger at A188999 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 22 2017
STATUS
approved