login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195562 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/4. 4
1, 24, 40, 63, 1600, 2624, 4161, 105560, 173160, 274559, 6965376, 11425920, 18116737, 459609240, 753937576, 1195430079, 30327244480, 49748454080, 78880268481, 2001138526424, 3282644031720, 5204902289663, 132044815499520 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
See A195500 for a discussion and references.
LINKS
FORMULA
Conjecture: a(n) = 65*a(n-3) + 65*a(n-6) - a(n-9). - R. J. Mathar, Sep 21 2011
Empirical g.f.: x*(x^6+24*x^5+40*x^4-2*x^3+40*x^2+24*x+1) / (x^9-65*x^6-65*x^3+1). - Colin Barker, Jun 04 2015
MATHEMATICA
Remove["Global`*"];
r = 1/4; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195562, A195563 *)
Sqrt[a^2 + b^2] (* A195564 *)
(* Peter J. C. Moses, Sep 02 2011 *)
CROSSREFS
Sequence in context: A269452 A294029 A366675 * A026040 A259217 A211567
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 21 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 00:58 EDT 2024. Contains 374478 sequences. (Running on oeis4.)