OFFSET
1,1
COMMENTS
Also numbers greater than the square of their smallest prime-factor: a(n)>A020639(a(n))^2=A088377(a(n));
Numbers with at least 4 divisors. - Franklin T. Adams-Watters, Jul 28 2006
Also numbers > 1 that are neither prime nor a square of a prime. Also numbers whose omega-sequence (A323023) has sum > 3. Numbers with omega-sequence summing to m are: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7). - Gus Wiseman, Jul 03 2019
Numbers n such that sigma_2(n)*tau(n) = A001157(n)*A000005(n) >= 4*n^2. Note that sigma_2(n)*tau(n) >= sigma(n)^2 = A072861 for all n. - Joshua Zelinsky, Jan 23 2025
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015
EXAMPLE
8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term.
From Gus Wiseman, Jul 03 2019: (Start)
The sequence of terms together with their prime indices begins:
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
(End)
MATHEMATICA
Select[Range[100], PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
PROG
(Haskell)
a080257 n = a080257_list !! (n-1)
a080257_list = m a024619_list a033942_list where
m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
| x == y = x : m xs ys
| x > y = y : m xs' ys
-- Reinhard Zumkeller, Apr 02 2012
(PARI) is(n)=omega(n)>1 || isprimepower(n)>2
(PARI) is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Reinhard Zumkeller, Feb 10 2003
EXTENSIONS
Definition clarified by Harvey P. Dale, Jul 23 2013
STATUS
approved