OFFSET
1,2
COMMENTS
a(n) = r(n,tau(n)), where r is defined as follows:
let d(n,j) = j-th divisor of n, 1 <= j <= tau(n) = A000005(n), r(n,1)=d(n,1), r(n,j) = if d(n,j) divides r(n,j-1) then r(n,j-1)/d(n,j) else r(n,j-1)*d(n,j), 1 < j <= tau(n);
p prime: a(p)=p, a(p^2)=p^3, a(p^3)=1, a(p^k)=p^A008344(k+1);
a(m)=1 iff m multiplicatively perfect: a(A007422(k))=1.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Divisor Product.
Eric Weisstein's World of Mathematics, Multiplicative Perfect Number.
EXAMPLE
Divisors of 48 = {1,2,3,4,6,8,12,16,24,48}: 1*2*3 = 6 -> 6*4 = 24 -> 24/6 = 4 -> 4*8 = 32 -> 32*12 = 384 -> 384/16 = 24 -> 24/24 = 1 -> 1*48 = a(48);
divisors of 49 = {1,7,49}: 1*7 = 7 -> 7*49 = 343 = a(49);
divisors of 50 = {1,2,5,10,25,50}: 1*2*5 = 10 -> 10/10 = 1 -> 1*25 = 25 -> 25*50 = 1250 = a(50).
MATHEMATICA
a[n_] := Module[{d = Divisors[n], e}, e[i_] := e[i] = If[i == 1, 1, If[Divisible[e[i-1], d[[i]]], e[i-1]/d[[i]], e[i-1] d[[i]]]]; e[Length[d]]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 10 2021 *)
PROG
(Haskell)
a084110 = foldl (/*) 1 . a027750_row where
x /* y = if m == 0 then x' else x*y where (x', m) = divMod x y
-- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 12 2003
EXTENSIONS
Corrected and extended by David Wasserman, Dec 14 2004
STATUS
approved