login
A084113
Number of multiplications when calculating A084110(n).
5
0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 2, 6, 1, 2, 2, 5, 1, 5, 1, 4, 4, 2, 1, 6, 2, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 4, 4, 2, 5, 1, 4, 2, 5, 1, 7, 1, 2, 4, 4, 2, 5, 1, 6, 3, 2, 1, 7, 2, 2, 2, 5, 1, 7, 2, 4, 2, 2, 2, 7, 1, 4, 4, 6, 1, 5, 1, 5, 5
OFFSET
1,4
COMMENTS
a(n) = A000005(n)-1-A084114(n) = A032741(n)-A084114(n) = (A032741(n)+A084115(n))/2;
a(n) = 1 iff n is prime.
LINKS
Eric Weisstein's World of Mathematics, Divisor Product.
PROG
(Haskell)
a084113 = f 0 1 . a027750_row where
f c _ [] = c
f c x (d:ds) = if r == 0 then f c x' ds else f (c + 1) (x * d) ds
where (x', r) = divMod x d
-- Reinhard Zumkeller, Jul 31 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 12 2003
STATUS
approved