%I #6 Jul 31 2014 17:27:03
%S 0,1,1,2,1,2,1,2,2,2,1,4,1,2,2,3,1,4,1,4,2,2,1,5,2,2,2,4,1,5,1,4,2,2,
%T 2,6,1,2,2,5,1,5,1,4,4,2,1,6,2,4,2,4,1,5,2,5,2,2,1,7,1,2,4,4,2,5,1,4,
%U 2,5,1,7,1,2,4,4,2,5,1,6,3,2,1,7,2,2,2,5,1,7,2,4,2,2,2,7,1,4,4,6,1,5,1,5,5
%N Number of multiplications when calculating A084110(n).
%C a(n) = A000005(n)-1-A084114(n) = A032741(n)-A084114(n) = (A032741(n)+A084115(n))/2;
%C a(n) = 1 iff n is prime.
%H Reinhard Zumkeller, <a href="/A084113/b084113.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DivisorProduct.html">Divisor Product</a>.
%o (Haskell)
%o a084113 = f 0 1 . a027750_row where
%o f c _ [] = c
%o f c x (d:ds) = if r == 0 then f c x' ds else f (c + 1) (x * d) ds
%o where (x', r) = divMod x d
%o -- _Reinhard Zumkeller_, Jul 31 2014
%Y Cf. A027750, A084110, A084114.
%K nonn
%O 1,4
%A _Reinhard Zumkeller_, May 12 2003